@article{KuehnBrenningWehrhanetal.2009, author = {K{\"u}hn, J{\"u}rgen and Brenning, Alexander and Wehrhan, Marc and Koszinski, Sylvia and Sommer, Michael}, title = {Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture}, issn = {1385-2256}, doi = {10.1007/s11119-008-9103-z}, year = {2009}, abstract = {Precision farming needs management rules to apply spatially differentiated treatments in agricultural fields. Digital soil mapping (DSM) tools, for example apparent soil electrical conductivity, corrected to 25A degrees C (EC25), and digital elevation models, try to explain the spatial variation in soil type, soil properties (e.g. clay content), site and crop that are determined by landscape characteristics such as terrain, geology and geomorphology. We examined the use of EC25 maps to delineate management zones, and identified the main factors affecting the spatial pattern of EC25 at the regional scale in a study area in eastern Germany. Data of different types were compared: EC25 maps for 11 fields, soil properties measured in the laboratory, terrain attributes, geological maps and the description of 75 soil profiles. We identified the factors that influence EC25 in the presence of spatial autocorrelation and field-specific random effects with spatial linear mixed-effects models. The variation in EC25 could be explained to a large degree (R (2) of up to 61\%). Primarily, soil organic matter and CaCO3, and secondarily clay and the presence of gleyic horizons were significantly related to EC25. Terrain attributes, however, had no significant effect on EC25. The geological map unit showed a significant relationship to EC25, and it was possible to determine the most important soil properties affecting EC25 by interpreting the geological maps. Including information on geology in precision agriculture could improve understanding of EC25 maps. The EC25 maps of fields should not be assumed to represent a map of clay content to form a basis for deriving management zones because other factors appeared to have a more important effect on EC25.}, language = {en} } @article{MuellerKoszinskiBrenningetal.2011, author = {Mueller, Marina Elsa Herta and Koszinski, Sylvia and Brenning, Alexander and Verch, Gernot and Korn, Ulrike and Sommer, Michael}, title = {Within-field variation of mycotoxin contamination of winter wheat is related to indicators of soil moisture}, series = {Plant and soil}, volume = {342}, journal = {Plant and soil}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0032-079X}, doi = {10.1007/s11104-010-0695-5}, pages = {289 -- 300}, year = {2011}, abstract = {Humidity is an important determinant of the mycotoxin production (DON, ZEA) by Fusarium species in the grain ears. From a landscape perspective humidity is not evenly distributed across fields. The topographically-controlled redistribution of water within a single field rather leads to spatially heterogeneous soil water content and air humidity. Therefore we hypothesized that the spatial distribution of mycotoxins is related to these topographically-controlled factors. To test this hypothesis we studied the mycotoxin concentrations at contrasting topographic relief positions, i.e. hilltops and depressions characterized by soils of different soil moisture regimes, on ten winter wheat fields in 2006 and 2007. Maize was the preceding crop and minimum tillage was practiced in the fields. The different topographic positions were associated with moderate differences in DON and ZEA concentrations in 2006, but with significant differences in 2007, with six times higher median ZEA and two times higher median DON detected at depression sites compared to the hilltops. The depression sites correspond to a higher topographic wetness index as well as redoximorphic properties in soil profiles, which empirically supports our hypothesis at least for years showing wetter conditions in sensitive time windows for Fusarium infections.}, language = {en} }