@article{KiemelDeCahsanParaskevopoulouetal.2022, author = {Kiemel, Katrin and De Cahsan, Binia and Paraskevopoulou, Sofia and Weithoff, Guntram and Tiedemann, Ralph}, title = {Mitochondrial genomes of the freshwater monogonont rotifer Brachionus fernandoi and of two additional B. calyciflorus sensu stricto lineages from Germany and the USA (Rotifera, Brachionidae)}, series = {Mitochondrial DNA. Part B-Resources}, volume = {7}, journal = {Mitochondrial DNA. Part B-Resources}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2380-2359}, doi = {10.1080/23802359.2022.2060765}, pages = {646 -- 648}, year = {2022}, abstract = {The Brachionus calyciflorus species complex was recently subdivided into four species, but genetic resources to resolve phylogenetic relationships within this complex are still lacking. We provide two complete mitochondrial (mt) genomes from B. calyciflorus sensu stricto (Germany, USA) and the mt coding sequences (cds) from a German B. fernandoi. Phylogenetic analysis placed our B. calyciflorus sensu stricto strains close to the published genomes of B. calyciflorus, forming the putative sister species to B. fernandoi. Global representatives of B. calyciflorus sensu stricto (i.e. Europe, USA, and China) are genetically closer related to each other than to B. fernandoi (average pairwise nucleotide diversity 0.079 intraspecific vs. 0.254 interspecific).}, language = {en} } @article{ApriyantoTambunan2020, author = {Apriyanto, Ardha and Tambunan, Van Basten}, title = {The complete mitochondrial genome of oil palm pollinating weevil, Elaeidobius kamerunicus Faust}, series = {Mitochondrial DNA: Part B}, volume = {5}, journal = {Mitochondrial DNA: Part B}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2380-2359}, doi = {10.1080/23802359.2020.1823899}, pages = {3450 -- 3452}, year = {2020}, abstract = {Elaeidobius kamerunicusis the most important insect pollinator in oil palm plantations. In this study, the mitochondrial genome (mitogenome) ofE. kamerunicus(17.729 bp), a member of the Curculionidae family, will be reported. The mitogenome consisted of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a putative control region (CR). Phylogenetic analysis based on 13 protein-coding genes (PCGs) using maximum Likelihood (ML) methods indicated thatE. kamerunicusbelongs to the Curculionidae family. This mitochondrial genome provides essential information for understanding genetic populations, phylogenetics, molecular evolution, and other biological applications in this species.}, language = {en} } @article{PatelLenzKitcheneretal.2017, author = {Patel, Riddhi P. and Lenz, Dorina and Kitchener, Andrew C. and Fickel, Jorns and Foerster, Daniel W. and Wilting, Andreas}, title = {Threatened but understudied: supporting conservation by understanding the genetic structure of the flat-headed cat}, series = {Conservation genetics}, volume = {18}, journal = {Conservation genetics}, publisher = {Springer}, address = {Dordrecht}, issn = {1566-0621}, doi = {10.1007/s10592-017-0990-2}, pages = {1423 -- 1433}, year = {2017}, language = {en} }