@article{FrombachUnbehauenKurniasihetal.2019, author = {Frombach, Janna and Unbehauen, Michael and Kurniasih, Indah N. and Schumacher, Fabian and Volz, Pierre and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Kleuser, Burkhard and Haag, Rainer and Alexiev, Ulrike and Vogt, Annika}, title = {Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin}, series = {Journal of controlled release}, volume = {299}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2019.02.028}, pages = {138 -- 148}, year = {2019}, abstract = {In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 mu g DXM/cm(2) skin encapsulated in CMS-NC (12 nm diameter, 5.8\% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9\% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25\% CD1a(+) cells were found within the epidermal CMS-NC+ population compared to approximately 3\% CD1a(+)/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.}, language = {en} } @article{WanjikuYamamotoKlosseketal.2019, author = {Wanjiku, Barbara and Yamamoto, Kenji and Klossek, Andre and Schumacher, Fabian and Pischon, Hannah and Mundhenk, Lars and Rancan, Fiorenza and Judd, Martyna M. and Ahmed, Muniruddin and Zoschke, Christian and Kleuser, Burkhard and R{\"u}hl, Eckart and Sch{\"a}fer-Korting, Monika}, title = {Qualifying X-ray and Stimulated Raman Spectromicroscopy for Mapping Cutaneous Drug Penetration}, series = {Analytical chemistry}, volume = {91}, journal = {Analytical chemistry}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/acs.analchem.9b00519}, pages = {7208 -- 7214}, year = {2019}, abstract = {Research on topical drug delivery relies on reconstructed human skin (RHS) in addition to ex vivo human and animal skin, each with specific physiological features. Here, we compared the penetration of dexamethasone from an ethanolic hydroxyethyl cellulose gel into ex vivo human skin, murine skin, and RHS. For comprehensive insights into skin morphology and penetration enhancing mechanisms, scanning transmission X-ray microscopy (STXM), liquid chromatography tandem mass spectrometry (LC-MS/MS), and stimulated Raman spectromicroscopy (SRS) were combined. STXM offers high spatial resolution with label-free drug detection and is therefore sensitive to tissue damage. Despite differences in sample preparation and data analysis, the amounts of dexamethasone in RHS, detected and quantified by STXM and LC-MS/MS, were very similar and increased during the first 100 min of exposure. SRS revealed interactions between the gel and the stratum corneum or, more specifically, its protein and lipid structures. Similar to both types of ex vivo skin, higher protein-to-lipid ratios within the stratum corneum of RHS indicated reduced lipid amounts after 30 min of ethanol exposure. Extended ethanol exposure led to a continued reduction of lipids in the ex vivo matrixes, while protein integrity appeared to be compromised in RHS, which led to declining protein signals. In conclusion, LC-MS/MS proved the predictive capability of STXM for label-free drug detection. Combining STXM with SRS precisely dissected the penetration enhancing effects of ethanol. Further studies on topical drug delivery should consider the potential of these complementary techniques.}, language = {en} } @article{RancanVolkmannGiulbudagianetal.2019, author = {Rancan, Fiorenza and Volkmann, Hildburg and Giulbudagian, Michael and Schumacher, Fabian and Stanko, Jessica Isolde and Kleuser, Burkhard and Blume-Peytavi, Ulrike and Calderon, Marcelo and Vogt, Annika}, title = {Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels}, series = {Pharmaceutics : Molecular Diversity Preservation International}, volume = {11}, journal = {Pharmaceutics : Molecular Diversity Preservation International}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11080394}, pages = {14}, year = {2019}, abstract = {Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1\% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1\% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.}, language = {en} } @article{AhlbergRancanEppleetal.2016, author = {Ahlberg, Sebastian and Rancan, Fiorenza and Epple, Matthias and Loza, Kateryna and H{\"o}ppe, David and Lademann, J{\"u}rgen and Vogt, Annika and Kleuser, Burkhard and Gerecke, Christian and Meinke, Martina C.}, title = {Comparison of different methods to study effects of silver nanoparticles on the pro- and antioxidant status of human keratinocytes and fibroblasts}, series = {Methods : focusing on rapidly developing techniques}, volume = {109}, journal = {Methods : focusing on rapidly developing techniques}, publisher = {Elsevier}, address = {San Diego}, issn = {1046-2023}, doi = {10.1016/j.ymeth.2016.05.015}, pages = {55 -- 63}, year = {2016}, language = {en} } @article{DoegeHoenzkeSchumacheretal.2016, author = {D{\"o}ge, Nadine and H{\"o}nzke, Stefan and Schumacher, Fabian and Balzus, Benjamin and Colombo, Miriam and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Sch{\"a}fer-Korting, Monika and Schindler, Anke and R{\"u}hl, Eckart and Skov, Per Stahl and Church, Martin K. and Hedtrich, Sarah and Kleuser, Burkhard and Bodmeier, Roland and Vogt, Annika}, title = {Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers}, series = {Journal of controlled release}, volume = {242}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2016.07.009}, pages = {25 -- 34}, year = {2016}, abstract = {Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-termex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24 h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05\%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24 h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6 h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45 kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{RancanWieheNoebeletal.2005, author = {Rancan, Fiorenza and Wiehe, Arno and N{\"o}bel, Maria and Senge, Mathias O and Al Omari, Saleh and B{\"o}hm, Fritz and John, Matthias and R{\"o}der, Beate}, title = {Influence of substitutions on asymmetric dihydroxychlorins with regard to intracellular uptake, subcellular localization and photosensitization of Jurkat cells}, issn = {1011-1344}, year = {2005}, abstract = {The search for new efficient sensitizers for photodynamic therapy (PDT) points to improve photophysical properties like absorption in the red region and singlet oxygen quantum yield as well as to control the localization of the sensitizer within the tumour cell. Depending on their physicochemical properties and their uptake mechanism, sensitizers can reach different intracellular concentrations and localize in different subcellular compartments. Moreover, the preferential localization of a sensitizer in target organelles, like mitochondria or lysosomes, could determine the cell death mechanism after PDT. This study aimed to investigate the influence of substitutions on dihydroxychlorins with regard to intracellular uptake, subcellular localization and cell death pathway. Moreover, the effect of a liposome-based delivery system was tested. The intracellular uptake was found to be strictly dependent on the sensitizer molecular structure and the means of its delivery. The most polar sensitizer in this study (compound 3) had, depending on incubation time, an intracellular concentration 2-8 times higher than the unsubstituted chlorin 1. All investigated photosensitizers localize predominantly in lysosomes but after longer incubation times weak fluorescence intensity was also detected in mitochondria and Golgi apparatus. The cell death pathway was found to be influenced by the sensitizer intracellular concentration and the applied light doses. In general, the increasing amphiphilicity of the sensitizer molecules is correlated with an increased sensitizer uptake and an increased rate of necrotic cells after irradiation. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} }