@article{WongAstYuetal.2016, author = {Wong, Joseph K. -H. and Ast, Sandra and Yu, Mingfeng and Flehr, Roman and Counsell, Andrew J. and Turner, Peter and Crisologo, Patrick and Todd, Matthew H. and Rutledge, Peter J.}, title = {Synthesis and Evaluation of 1,8-Disubstituted-Cyclam/Naphthalimide Conjugates as Probes for Metal Ions}, series = {ChemistryOpen : including thesis treasury}, volume = {5}, journal = {ChemistryOpen : including thesis treasury}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.201600010}, pages = {375 -- 385}, year = {2016}, abstract = {Fluorescent molecular probes for metal ions have a raft of potential applications in chemistry and biomedicine. We report the synthesis and photophysical characterisation of 1,8-disubstituted-cyclam/naphthalimide conjugates and their zinc complexes. An efficient synthesis of 1,8-bis-(2-azidoethyl)cyclam has been developed and used to prepare 1,8-disubstituted triazolyl-cyclam systems, in which the pendant group is connected to triazole C4. UV/Vis and fluorescence emission spectra, zinc binding experiments, fluorescence quantum yield and lifetime measurements and pH titrations of the resultant bis-naphthalimide ligand elucidate a complex pattern of photophysical behaviour. Important differences arise from the inclusion of two fluorophores in the one probe and from the variation of triazole substitution pattern (dye at C4 vs. N1). Introducing a second fluorophore greatly extends fluorescence lifetimes, whereas the altered substitution pattern at the cyclam amines exerts a major influence on fluorescence output and metal binding. Crystal structures of two key zinc complexes evidence variations in triazole coordination that mirror the solution-phase behaviour of these systems.}, language = {en} } @article{YuAstYuetal.2014, author = {Yu, Mingfeng and Ast, Sandra and Yu, Qun and Lo, Anthony T. S. and Flehr, Roman and Todd, Matthew H. and Rutledge, Peter J.}, title = {Incorporating a piperidinyl group in the fluorophore extends the fluorescence lifetime of click-derived cyclam-naphthalimide conjugates}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100761}, pages = {12}, year = {2014}, abstract = {Ligands incorporating a tetraazamacrocycle receptor, a 'click'-derived triazole and a 1,8-naphthalimide fluorophore have proven utility as probes for metal ions. Three new cyclam-based molecular probes are reported, in which a piperidinyl group has been introduced at the 4-position of the naphthalimide fluorophore. These compounds have been synthesized using the copper(I)-catalyzed azide-alkyne Huisgen cycloaddition and their photophysical properties studied in detail. The alkylamino group induces the expected red-shift in absorption and emission spectra relative to the simple naphthalimide derivatives and gives rise to extended fluorescence lifetimes in aqueous buffer. The photophysical properties of these systems are shown to be highly solvent-dependent. Screening the fluorescence responses of the new conjugates to a wide variety of metal ions reveals significant and selective fluorescence quenching in the presence of copper(II), yet no fluorescence enhancement with zinc(II) as observed previously for the simple naphthalimide derivatives. Reasons for this different behaviour are proposed. Cytotoxicity testing shows that these new cyclam-triazole-dye conjugates display little or no toxicity against either DLD-1 colon carcinoma cells or MDA-MB-231 breast carcinoma cells, suggesting a potential role for these and related systems in biological sensing applications.}, language = {en} } @article{AstMuellerFlehretal.2011, author = {Ast, Sandra and M{\"u}ller, Holger and Flehr, Roman and Klamroth, Tillmann and Walz, Bernd and Holdt, Hans-J{\"u}rgen}, title = {High Na+ and K+-induced fluorescence enhancement of a pi-conjugated phenylaza-18-crown-6-triazol-substituted coumarin fluoroionophore}, series = {Chemical communications}, volume = {47}, journal = {Chemical communications}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c0cc04370b}, pages = {4685 -- 4687}, year = {2011}, abstract = {The new pi-conjugated 1,2,3-triazol-1,4-diyl fluoroionophore 1 generated via Cu(I) catalyzed [3 + 2] cycloaddition shows high fluorescence enhancement factors (FEF) in the presence of Na+ (FEF = 58) and K+ (FEF = 27) in MeCN and high selectivity towards K+ under simulated physiological conditions (160 mM K+ or Na+, respectively) with a FEF of 2.5 for K+.}, language = {en} } @article{KienzlerFlehrKrameretal.2011, author = {Kienzler, Andrea and Flehr, Roman and Kramer, Rolf A. and Gehne, Soeren and Kumke, Michael Uwe and Bannwarth, Willi}, title = {Novel Three-Color FRET Tool Box for Advanced Protein and DNA Analysis}, series = {Bioconjugate chemistry}, volume = {22}, journal = {Bioconjugate chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {1043-1802}, doi = {10.1021/bc2002659}, pages = {1852 -- 1863}, year = {2011}, abstract = {We report on a new three-color FRET system which we were able to verify in peptides as well as in synthetic DNA. All three chromophores could be introduced by a building block approach avoiding postsynthetic labeling. Additional features are robustness, matching spectroscopic properties, high-energy transfer, and sensitivity. The system was investigated in detail on a set of peptides as well as an array of tailored oligonucleotides. The detailed analysis of the experimental data and comparison with theoretical considerations were in excellent agreement. It is shown that in the case of polypeptides specific interaction with the fluorescence probes has to be considered. In contrast with DNA, the fluorescence probes did not show any indications of such interactions. The novel three-color FRET toolbox revealed the potential for applications studying fundamental processes of three interacting molecules in life science applications.}, language = {en} } @article{KienzlerFlehrGehneetal.2012, author = {Kienzler, Andrea Altevogt Nee and Flehr, Roman and Gehne, S{\"o}ren and Kumke, Michael Uwe and Bannwarth, Willi}, title = {Verification and biophysical characterization of a New Three-Color Forster Resonance-Energy-Transfer (FRET) System in DNA}, series = {Helvetica chimica acta}, volume = {95}, journal = {Helvetica chimica acta}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0018-019X}, doi = {10.1002/hlca.201100460}, pages = {543 -- 555}, year = {2012}, abstract = {We report on a new three-color FRET system consisting of three fluorescent dyes, i.e., of a carbostyril (=quinolin-2(1H)-one)-derived donor D, a (bathophenanthroline)ruthenium complex as a relay chromophore A1, and a Cy dye as A2 (FRET=Forster resonance-energy-transfer) (cf. Fig. 1). With their widely matching spectroscopic properties (cf. Fig. 2), the combination of these dyes yielded excellent FRET efficiencies. Furthermore, fluorescence lifetime measurements revealed that the long fluorescence lifetime of the Ru complex was transferred to the Cy dye offering the possibility to measure the whole system in a time-resolved mode. The FRET system was established on double-stranded DNA (cf. Fig. 3) but it should also be generally applicable to other biomolecules.}, language = {en} } @article{GehneFlehrKienzleretal.2012, author = {Gehne, S{\"o}ren and Flehr, Roman and Kienzler, Andrea Altevogt Nee and Berg, Maik and Bannwarth, Willi and Kumke, Michael Uwe}, title = {Dye dynamics in three-color FRET samples}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {116}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp3064273}, pages = {10798 -- 10806}, year = {2012}, abstract = {Time-resolved emission data (fluorescence decay and fluorescence depolarization) of two three-color Forster resonance energy transfer (tc-FRET) systems consisting of a carbostyril donor (D), a ruthenium complex (Ru) as relay dye, and a Cy5 derivative (Cy) or, optionally, an anthraquinone quencher (Q) were carefully analyzed using advanced distribution analysis models. Thereby, it is possible to get information on the flexibility and mobility of the chromophores which are bound to double stranded (ds) DNA. Especially the distance distribution based on the analysis of the fluorescence depolarization is an attractive approach to complement data of fluorescence decay time analysis. The distance distributions extracted from the experimental data were in excellent agreement with those determined from accessible volume (AV) simulations. Moreover, the study showed that for tc-FRET systems the combination of dyes emitting on different time scales (e.g., nanoseconds vs microseconds) is highly beneficial in the distribution analysis of time-resolved luminescence data in cases where macromolecules such as DNA are involved. Here, the short lifetimes can yield information on the rotation of the dye molecule itself and the long lifetime can give insight in the overall dynamics of the macromolecule.}, language = {en} } @article{HeydariFlehrStumpe2013, author = {Heydari, Esmaeil and Flehr, Roman and Stumpe, Joachim}, title = {Influence of spacer layer on enhancement of nanoplasmon-assisted random lasing}, series = {Applied physics letters}, volume = {102}, journal = {Applied physics letters}, number = {13}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4800776}, pages = {4}, year = {2013}, abstract = {Threshold reduction and emission enhancement are reported for a gold nanoparticle-based waveguided random laser, exploiting the localized surface plasmon resonance excitation. It was experimentally found that a proper thickness of the spacer layer between the gold nanoparticles and the gain layer enhances the random laser performance. It tunes the coupling between the gain polymer and the gold nanoparticles and avoids the quenching of emission in close contact to the gold nanoparticles which is considered as one of the main sources of loss in the current laser system. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4800776]}, language = {en} } @article{HeydariPastorizaSantosFlehretal.2013, author = {Heydari, Esmaeil and Pastoriza-Santos, Isabel and Flehr, Roman and Liz-Marzan, Luis M. and Stumpe, Joachim}, title = {Nanoplasmonic enhancement of the emission of semiconductor polymer composites}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {117}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {32}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp404068m}, pages = {16577 -- 16583}, year = {2013}, abstract = {We report on the influence of localized surface plasmon resonance excitation of Au@SiO2 core-shell nanoparticles on the amplified spontaneous emission of a semiconductor polymer composite (F8BT/MEH-PPV). Au@SiO2 nanoparticles are compatible with the donor-acceptor polymer matrix and get uniformly distributed within the whole polymer film. The plasmon resonance band of the nanoparticles correlates with both the emission and excitation spectra of the polymer composite, as well as with the donor emission and acceptor excitation spectra. We demonstrate that resonantly excited Au@SiO2 nanoparticles enhance the amplified spontaneous emission and the modal gain of the polymer films. The measurement of influential factors reveals that the emission is enhanced predominantly by the increase of acceptor excitation rate, which is accompanied by depletion of the FRET efficiency and increase of quantum yield. The enhancement factor is increased by both introducing a higher loading of plasmonic nanoparticles in the polymer film and increasing the excitation energy. This work shows that these plasmonic nanoantennas are able to enhance the stimulated emission of semiconductor polymers by improving the size mismatch between the excitation light and the emitting polymer.}, language = {en} } @article{SchwarzeMicklerDoscheetal.2010, author = {Schwarze, Thomas and Mickler, Wulfhard and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Holdt, Hans-J{\"u}rgen}, title = {Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination}, issn = {0947-6539}, doi = {10.1002/chem.200902281}, year = {2010}, abstract = {Fluoroionophores of fluorophore-spacer-receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorophore probes 1-13 consist of a fluorophore group, in alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1-3) revealed, dominant through-space pathway for oxidative photoinduced electron transfer (PET) in CH2-bridged dithiomaleonitrile fluoroionophores. Second. fluorescent probes 4-9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (E-Ox) through electron-withdrawing or -donating groups on the anthracene moiety regulates file thermodynamic driving force for oxidative PET (Delta G(PET)) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (Phi(f)), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10-13 were synthesized.}, language = {en} } @article{KumkeDoscheFlehretal.2006, author = {Kumke, Michael Uwe and Dosche, Carsten and Flehr, Roman and Trowitzsch-Kienast, Wolfram and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Spectroscopic characterization of the artificial siderophore pyridinochelin}, issn = {0939-5075}, year = {2006}, language = {en} } @article{SchwarzeDoscheFlehretal.2010, author = {Schwarze, Thomas and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Cleve, Ernst and Buschmann, Hans-J{\"u}rgen and Holdt, Hans-J{\"u}rgen}, title = {Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement}, issn = {1359-7345}, year = {2010}, language = {en} } @article{KramerFlehrLayetal.2009, author = {Kramer, Rolf A. and Flehr, Roman and Lay, Myriam and Kumke, Michael Uwe and Bannwarth, Willi}, title = {Comparative studies of different quinoline derivatives as donors in fluorescence-resonance-energy-transfer (FRET) : systems in combination with a (Bathophenanthroline)ruthenium(II) complex as acceptor}, issn = {0018-019X}, doi = {10.1002/hlca.200900235}, year = {2009}, language = {en} } @article{SchwarzeMicklerDoscheetal.2010, author = {Schwarze, Thomas and Mickler, Wulfhard and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Holdt, Hans-J{\"u}rgen}, title = {Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination}, issn = {0947-6539}, year = {2010}, abstract = {Fluoroionophores of fluorophore-spacer-receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorescent probes 1-13 consist of a fluorophore group, an alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1-3) revealed a dominant through-space pathway for oxidative photoinduced electron transfer (PET) in CH2-bridged dithiomaleonitrile fluoroionophores. Second, fluorescent probes 4-9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (EOx) through electron-withdrawing or -donating groups on the anthracene moiety regulates the thermodynamic driving force for oxidative PET (GPET) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (f), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10-13 were synthesized.}, language = {en} } @article{KramerKainmuellerFlehretal.2008, author = {Kramer, Rolf A. and Kainm{\"u}ller, Eva K. and Flehr, Roman and Kumke, Michael Uwe and Bannwarth, Willi}, title = {Quenching of the long-lived Ru(II)bathophenanthroline luminescence for the detection of supramolecular interactions}, year = {2008}, language = {en} } @article{SchwarzeDoscheFlehretal.2010, author = {Schwarze, Thomas and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Cleve, Ernst and Buschmann, Hans-J{\"u}rgen and Holdt, Hans-J{\"u}rgen}, title = {Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement}, issn = {1359-7345}, doi = {10.1039/B919973j}, year = {2010}, abstract = {The [6.6](9,10)anthracenophane 1 (Scheme 1) is a selective fluoroionophore for the detection of PdCl2 with a large fluorescence enhancement factor (I/I-0 > 250).}, language = {en} }