@phdthesis{Melani2019, author = {Melani, Giacomo}, title = {From structural fluctuations to vibrational spectroscopy of adsorbates on surfaces}, doi = {10.25932/publishup-44182}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441826}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2019}, abstract = {Aluminum oxide is an Earth-abundant geological material, and its interaction with water is of crucial importance for geochemical and environmental processes. Some aluminum oxide surfaces are also known to be useful in heterogeneous catalysis, while the surface chemistry of aqueous oxide interfaces determines the corrosion, growth and dissolution of such materials. In this doctoral work, we looked mainly at the (0001) surface of α-Al 2 O 3 and its reactivity towards water. In particular, a great focus of this work is dedicated to simulate and address the vibrational spectra of water adsorbed on the α-alumina(0001) surface in various conditions and at different coverages. In fact, the main source of comparison and inspiration for this work comes from the collaboration with the "Interfacial Molecular Spectroscopy" group led by Dr. R. Kramer Campen at the Fritz-Haber Institute of the MPG in Berlin. The expertise of our project partners in surface-sensitive Vibrational Sum Frequency (VSF) generation spectroscopy was crucial to develop and adapt specific simulation schemes used in this work. Methodologically, the main approach employed in this thesis is Ab Initio Molecular Dynamics (AIMD) based on periodic Density Functional Theory (DFT) using the PBE functional with D2 dispersion correction. The analysis of vibrational frequencies from both a static and a dynamic, finite-temperature perspective offers the ability to investigate the water / aluminum oxide interface in close connection to experiment. The first project presented in this work considers the characterization of dissociatively adsorbed deuterated water on the Al-terminated (0001) surface. This particular structure is known from both experiment and theory to be the thermodynamically most stable surface termination of α-alumina in Ultra-High Vacuum (UHV) conditions. Based on experiments performed by our colleagues at FHI, different adsorption sites and products have been proposed and identified for D 2 O. While previous theoretical investigations only looked at vibrational frequencies of dissociated OD groups by staticNormal Modes Analysis (NMA), we rather employed a more sophisticated approach to directly assess vibrational spectra (like IR and VSF) at finite temperature from AIMD. In this work, we have employed a recent implementation which makes use of velocity-velocity autocorrelation functions to simulate such spectral responses of O-H(D) bonds. This approach allows for an efficient and qualitatively accurate estimation of Vibrational Densities of States (VDOS) as well as IR and VSF spectra, which are then tested against experimental spectra from our collaborators. In order to extend previous work on unimolecularly dissociated water on α-Al 2 O 3 , we then considered a different system, namely, a fully hydroxylated (0001) surface, which results from the reconstruction of the UHV-stable Al-terminated surface at high water contents. This model is then further extended by considering a hydroxylated surface with additional water molecules, forming a two-dimensional layer which serves as a potential template to simulate an aqueous interface in environmental conditions. Again, employing finite-temperature AIMD trajectories at the PBE+D2 level, we investigated the behaviour of both hydroxylated surface (HS) and the water-covered structure derived from it (known as HS+2ML). A full range of spectra, from VDOS to IR and VSF, is then calculated using the same methodology, as described above. This is the main focus of the second project, reported in Chapter 5. In this case, comparison between theoretical spectra and experimental data is definitely good. In particular, we underline the nature of high-frequency resonances observed above 3700 cm -1 in VSF experiments to be associated with surface OH-groups, known as "aluminols" which are a key fingerprint of the fully hydroxylated surface. In the third and last project, which is presented in Chapter 6, the extension of VSF spectroscopy experiments to the time-resolved regime offered us the opportunity to investigate vibrational energy relaxation at the α-alumina / water interface. Specifically, using again DFT-based AIMD simulations, we simulated vibrational lifetimes for surface aluminols as experimentally detected via pump-probe VSF. We considered the water-covered HS model as a potential candidate to address this problem. The vibrational (IR) excitation and subsequent relaxation is performed by means of a non-equilibrium molecular dynamics scheme. In such a scheme, we specifically looked at the O-H stretching mode of surface aluminols. Afterwards, the analysis of non-equilibrium trajectories allows for an estimation of relaxation times in the order of 2-4 ps which are in overall agreement with measured ones. The aim of this work has been to provide, within a consistent theoretical framework, a better understanding of vibrational spectroscopy and dynamics for water on the α-alumina(0001) surface,ranging from very low water coverage (similar to the UHV case) up to medium-high coverages, resembling the hydroxylated oxide in environmental moist conditions.}, language = {en} } @phdthesis{Vranic2019, author = {Vranic, Marija}, title = {3D Structure of the biomarker hepcidin-25 in its native state}, doi = {10.25932/publishup-45929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459295}, school = {Universit{\"a}t Potsdam}, pages = {xii, 135}, year = {2019}, abstract = {Hepcidin-25 (Hep-25) plays a crucial role in the control of iron homeostasis. Since the dysfunction of the hepcidin pathway leads to multiple diseases as a result of iron imbalance, hepcidin represents a potential target for the diagnosis and treatment of disorders of iron metabolism. Despite intense research in the last decade targeted at developing a selective immunoassay for iron disorder diagnosis and treatment and better understanding the ferroportin-hepcidin interaction, questions remain. The key to resolving these underlying questions is acquiring exact knowledge of the 3D structure of native Hep-25. Since it was determined that the N-terminus, which is responsible for the bioactivity of Hep-25, contains a small Cu(II)-binding site known as the ATCUN motif, it was assumed that the Hep-25-Cu(II) complex is the native, bioactive form of the hepcidin. This structure has thus far not been elucidated in detail. Owing to the lack of structural information on metal-bound Hep-25, little is known about its possible biological role in iron metabolism. Therefore, this work is focused on structurally characterizing the metal-bound Hep-25 by NMR spectroscopy and molecular dynamics simulations. For the present work, a protocol was developed to prepare and purify properly folded Hep-25 in high quantities. In order to overcome the low solubility of Hep-25 at neutral pH, we introduced the C-terminal DEDEDE solubility tag. The metal binding was investigated through a series of NMR spectroscopic experiments to identify the most affected amino acids that mediate metal coordination. Based on the obtained NMR data, a structural calculation was performed in order to generate a model structure of the Hep-25-Ni(II) complex. The DEDEDE tag was excluded from the structural calculation due to a lack of NMR restraints. The dynamic nature and fast exchange of some of the amide protons with solvent reduced the overall number of NMR restraints needed for a high-quality structure. The NMR data revealed that the 20 Cterminal Hep-25 amino acids experienced no significant conformational changes, compared to published results, as a result of a pH change from pH 3 to pH 7 and metal binding. A 3D model of the Hep-25-Ni(II) complex was constructed from NMR data recorded for the hexapeptideNi(II) complex and Hep-25-DEDEDE-Ni(II) complex in combination with the fixed conformation of 19 C-terminal amino acids. The NMR data of the Hep-25-DEDEDE-Ni(II) complex indicates that the ATCUN motif moves independently from the rest of the structure. The 3D model structure of the metal-bound Hep-25 allows for future works to elucidate hepcidin's interaction with its receptor ferroportin and should serve as a starting point for the development of antibodies with improved selectivity.}, language = {en} } @phdthesis{Qin2019, author = {Qin, Qing}, title = {Chemical functionalization of porous carbon-based materials to enable novel modes for efficient electrochemical N2 fixation}, doi = {10.25932/publishup-44339}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-443397}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2019}, abstract = {The central motivation of the thesis was to provide possible solutions and concepts to improve the performance (e.g. activity and selectivity) of electrochemical N2 reduction reaction (NRR). Given that porous carbon-based materials usually exhibit a broad range of structural properties, they could be promising NRR catalysts. Therefore, the advanced design of novel porous carbon-based materials and the investigation of their application in electrocatalytic NRR including the particular reaction mechanisms are the most crucial points to be addressed. In this regard, three main topics were investigated. All of them are related to the functionalization of porous carbon for electrochemical NRR or other electrocatalytic reactions. In chapter 3, a novel C-TixOy/C nanocomposite has been described that has been obtained via simple pyrolysis of MIL-125(Ti). A novel mode for N2 activation is achieved by doping carbon atoms from nearby porous carbon into the anion lattice of TixOy. By comparing the NRR performance of M-Ts and by carrying out DFT calculations, it is found that the existence of (O-)Ti-C bonds in C-doped TixOy can largely improve the ability to activate and reduce N2 as compared to unoccupied OVs in TiO2. The strategy of rationally doping heteroatoms into the anion lattice of transition metal oxides to create active centers may open many new opportunities beyond the use of noble metal-based catalysts also for other reactions that require the activation of small molecules as well. In chapter 4, a novel catalyst construction composed of Au single atoms decorated on the surface of NDPCs was reported. The introduction of Au single atoms leads to active reaction sites, which are stabilized by the N species present in NDPCs. Thus, the interaction within as-prepared AuSAs-NDPCs catalysts enabled promising performance for electrochemical NRR. For the reaction mechanism, Au single sites and N or C species can act as Frustrated Lewis pairs (FLPs) to enhance the electron donation and back-donation process to activate N2 molecules. This work provides new opportunities for catalyst design in order to achieve efficient N2 fixation at ambient conditions by utilizing recycled electric energy. The last topic described in chapter 5 mainly focused on the synthesis of dual heteroatom-doped porous carbon from simple precursors. The introduction of N and B heteroatoms leads to the construction of N-B motives and Frustrated Lewis pairs in a microporous architecture which is also rich in point defects. This can improve the strength of adsorption of different reactants (N2 and HMF) and thus their activation. As a result, BNC-2 exhibits a desirable electrochemical NRR and HMF oxidation performance. Gas adsorption experiments have been used as a simple tool to elucidate the relationship between the structure and catalytic activity. This work provides novel and deep insights into the rational design and the origin of activity in metal-free electrocatalysts and enables a physically viable discussion of the active motives, as well as the search for their further applications. Throughout this thesis, the ubiquitous problems of low selectivity and activity of electrochemical NRR are tackled by designing porous carbon-based catalysts with high efficiency and exploring their catalytic mechanisms. The structure-performance relationships and mechanisms of activation of the relatively inert N2 molecules are revealed by either experimental results or DFT calculations. These fundamental understandings pave way for a future optimal design and targeted promotion of NRR catalysts with porous carbon-based structure, as well as study of new N2 activation modes.}, language = {en} } @phdthesis{Wang2019, author = {Wang, Xuepu}, title = {Polydimethylsiloxane wrinkles for surface patterns and assembly of metallic nanoparticles}, school = {Universit{\"a}t Potsdam}, pages = {131}, year = {2019}, language = {en} } @phdthesis{Debsharma2019, author = {Debsharma, Tapas}, title = {Cellulose derived polymers}, doi = {10.25932/publishup-44131}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441312}, school = {Universit{\"a}t Potsdam}, pages = {x, 103}, year = {2019}, abstract = {Plastics, such as polyethylene, polypropylene, and polyethylene terephthalate are part of our everyday lives in the form of packaging, household goods, electrical insulation, etc. These polymers are non-degradable and create many environmental problems and public health concerns. Additionally, these polymers are produced from finite fossils resources. With the continuous utilization of these limited resources, it is important to look towards renewable sources along with biodegradation of the produced polymers, ideally. Although many bio-based polymers are known, such as polylactic acid, polybutylene succinate adipate or polybutylene succinate, none have yet shown the promise of replacing conventional polymers like polyethylene, polypropylene and polyethylene terephthalate. Cellulose is one of the most abundant renewable resources produced in nature. It can be transformed into various small molecules, such as sugars, furans, and levoglucosenone. The aim of this research is to use the cellulose derived molecules for the synthesis of polymers. Acid-treated cellulose was subjected to thermal pyrolysis to obtain levoglucosenone, which was reduced to levoglucosenol. Levoglucosenol was polymerized, for the first time, by ring-opening metathesis polymerization (ROMP) yielding high molar mass polymers of up to ~150 kg/mol. The poly(levoglucosenol) is thermally stable up to ~220 ℃, amorphous, and is exhibiting a relatively high glass transition temperature of ~100 ℃. The poly(levoglucosenol) can be converted to a transparent film, resembling common plastic, and was found to degrade in a moist acidic environment. This means that poly(levoglucosenol) may find its use as an alternative to conventional plastic, for instance, polystyrene. Levoglucosenol was also converted into levoglucosenyl methyl ether, which was polymerized by cationic ring-opening metathesis polymerization (CROP). Polymers were obtained with molar masses up to ~36 kg/mol. These polymers are thermally stable up to ~220 ℃ and are semi-crystalline thermoplastics, having a glass transition temperature of ~35 ℃ and melting transition of 70-100 ℃. Additionally, the polymers underwent cross-linking, hydrogenation and thiol-ene click chemistry.}, language = {en} } @phdthesis{Zhang2019, author = {Zhang, Shuhao}, title = {Synthesis and self-assembly of protein-polymer conjugates for the preparation of biocatalytically active membranes}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 161}, year = {2019}, abstract = {This thesis covers the synthesis of conjugates of 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) with suitable polymers and the subsequent immobilization of these conjugates in thin films via two different approaches. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. Conjugation and immobilization renders the enzyme applicable for utilization in a continuously run biocatalytic process which avoids the common problem of product inhibition. Within this thesis, conjugates of DERA and poly(N-isopropylacrylamide) (PNIPAm) for immobilization via a self-assembly approach were synthesized and isolated, as well as conjugates with poly(N,N-dimethylacrylamide) (PDMAA) for a simplified and scalable spray-coating approach. For the DERA/PNIPAm-conjugates different synthesis routes were tested, including grafting-from and grafting-to, both being common methods for the conjugation. Furthermore, both lysines and cysteines were addressed for the conjugation in order to find optimum conjugation conditions. It turned out that conjugation via lysine causes severe activity loss as one lysine plays a key role in the catalyzing mechanism. The conjugation via the cysteines by a grafting-to approach using pyridyl disulfide (PDS) end-group functionalized polymers led to high conjugation efficiencies in the presence of polymer solubilizing NaSCN. The resulting conjugates maintained enzymatic activity and also gained high acetaldehyde tolerance which is necessary for their use later on in an industrial relevant process after their immobilization. The resulting DERA/PNIPAm conjugates exhibited enhanced interfacial activity at the air/water interface compared to the single components, which is an important pre-requisite for the immobilization via the self-assembly approach. Conjugates with longer polymer chains formed homogeneous films on silicon wafers and glass slides while the ones with short chains could only form isolated aggregates. On top of that, long chain conjugates showed better activity maintenance upon the immobilization. The crosslinking of conjugates, as well as their fixation on the support materials, are important for the mechanical stability of the films obtained from the self-assembly process. Therefore, in a second step, we introduced the UV-crosslinkable monomer DMMIBA to the PNIPAm polymers to be used for conjugation. The introduction of DMMIBA reduced the lower critical solution temperature (LCST) of the polymer and thus the water solubility at ambient conditions, resulting in lower conjugation efficiencies and in turn slightly poorer acetaldehyde tolerance of the resulting conjugates. Unlike the DERA/PNIPAm, the conjugates from the copolymer P(NIPAM-co-DMMIBA) formed continuous, homogenous films only after the crosslinking step via UV-treatment. For a firm binding of the crosslinked films, a functionalization protocol for the model support material cyclic olefin copolymer (COC) and the final target support, PAN based membranes, was developed that introduces analogue UV-reactive groups to the support surface. The conjugates immobilized on the modified COC films maintained enzymatic activity and showed good mechanical stability after several cycles of activity assessment. Conjugates with longer polymer chains, however, showed a higher degree of crosslinking after the UV-treatment leading to a pronounced loss of activity. A porous PAN membrane onto which the conjugates were immobilized as well, was finally transferred to a dead end filtration membrane module to catalyze the aldol reaction of the industrially relevant mixture of acetaldehyde and hexanal in a continuous mode. Mono aldol product was detectable, but yields were comparably low and the operational stability needs to be further improved Another approach towards immobilization of DERA conjugates that was followed, was to generate the conjugates in situ by simply mixing enzyme and polymer and spray coat the mixture onto the membrane support. Compared to the previous approach, the focus was more put on simplicity and a possible scalability of the immobilization. Conjugates were thus only generated in-situ and not further isolated and characterized. For the conjugation, PDMAA equipped with N-2-thiolactone acrylamide (TlaAm) side chains was used, an amine-reactive comonomer that can react with the lysine residues of DERA, as well as with amino groups introduced to a desired support surface. Furthermore disulfide formation after hydrolysis of the Tla groups causes a crosslinking effect. The synthesized copolymer poly(N,N-Dimethylacrylamide-co-N-2-thiolactone acrylamide) (P(DMAA-co-TlaAm)) thus serves a multiple purpose including protein binding, crosslinking and binding to support materials. The mixture of DERA and polymer could be immobilized on the PAN support by spray-coating under partial maintenance of enzymatic activity. To improve the acetaldehyde tolerance, the polymer in used was further equipped with cysteine reactive PDS end-groups that had been used for the conjugation as described in the first part of the thesis. The generated conjugates indeed showed good acetaldehyde tolerance and were thus used to be coated onto PAN membrane supports. Post treatment with a basic aqueous solution of H2O2 was supposed to further crosslink the spray-coated film hydrolysis and oxidation of the thiolactone groups. However, a washing off of the material was observed. Optimization is thus still necessary.}, language = {en} } @phdthesis{Schuerings2019, author = {Sch{\"u}rings, Marco Philipp Hermann}, title = {Synthesis of 1D microgel strands and their motion analysis in solution}, doi = {10.25932/publishup-43953}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439532}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2019}, abstract = {The fabrication of 1D nanostrands composed of stimuli responsive microgels has been shown in this work. Microgels are well known materials able to respond to various stimuli from outer environment. Since these microgels respond via a volume change to an external stimulus, a targeted mechanical response can be achieved. Through carefully choosing the right composition of the polymer matrix, microgels can be designed to react precisely to the targeted stimuli (e.g. drug delivery via pH and temperature changes, or selective contractions through changes in electrical current125). In this work, it was aimed to create flexible nano-filaments which are capable of fast anisotropic contractions similar to muscle filaments. For the fabrication of such filaments or strands, nanostructured templates (PDMS wrinkles) were chosen due to a facile and low-cost fabrication and versatile tunability of their dimensions. Additionally, wrinkling is a well-known lithography-free method which enables the fabrication of nanostructures in a reproducible manner and with a high long-range periodicity. In Chapter 2.1, it was shown for the first time that microgels as soft matter particles can be aligned to densely packed microgel arrays of various lateral dimensions. The alignment of microgels with different compositions (e.g. VCL/AAEM, NIPAAm, NIPAAm/VCL and charged microgels) was shown by using different assembly techniques (e.g. spin-coating, template confined molding). It was chosen to set one experimental parameter constant which was the SiOx surface composition of the templates and substrates (e.g. oxidized PDMS wrinkles, Si-wafers and glass slides). It was shown that the fabrication of nanoarrays was feasible with all tested microgel types. Although the microgels exhibited different deformability when aligned on a flat surface, they retained their thermo-responsivity and swelling behavior. Towards the fabrication of 1D microgel strands interparticle connectivity was aspired. This was achieved via different cross-linking methods (i.e. cross-linking via UV-irradiation and host-guest complexation) discussed in Chapter 2.2. The microgel arrays created by different assembly methods and microgel types were tested for their cross-linking suitability. It was observed that NIPAAm based microgels cannot be cross-linked with UV light. Furthermore, it was found that these microgels exhibit a strong surface-particle-interaction and therefore could not be detached from the given substrates. In contrast to the latter, with VCL/AAEM based microgels it was possible to both UV cross-link them based on the keto-enol tautomerism of the AAEM copolymer, and to detach them from the substrate due to the lower adhesion energy towards SiOx surfaces. With VCL/AAEM microgels long, one-dimensional microgel strands could be re-dispersed in water for further analysis. It has also been shown that at least one lateral dimension of the free dispersed 1D microgel strands is easily controllable by adjusting the wavelength of the wrinkled template. For further work, only VCL/AAEM based microgels were used to focus on the main aim of this work, i.e. the fabrication of 1D microgel nanostrands. As an alternative to the unspecific and harsh UV cross-linking, the host-guest complexation via diazobenzene cross-linkers and cyclodextrin hosts was explored. The idea behind this approach was to give means to a future construction kit-like approach by incorporation of cyclodextrin comonomers in a broad variety of particle systems (e.g. microgels, nanoparticles). For this purpose, VCL/AAEM microgels were copolymerized with different amounts of mono-acrylate functionalized β-cyclodextrin (CD). After successfully testing the cross-linking capability in solution, the cross-linking of aligned VCL/AAEM/CD microgels was tried. Although the cross-linking worked well, once the single arrays came into contact to each other, they agglomerated. As a reason for this behavior residual amounts of mono-complexed diazobenzene linkers were suspected. Thus, end-capping strategies were tried out (e.g. excess amounts of β-cyclodextrin and coverage with azobenzene functionalized AuNPs) but were unsuccessful. With deeper thought, entropy effects were taken into consideration which favor the release of complexed diazobenzene linker leading to agglomerations. To circumvent this entropy driven effect, a multifunctional polymer with 50\% azobenzene groups (Harada polymer) was used. First experiments with this polymer showed promising results regarding a less pronounced agglomeration (Figure 77). Thus, this approach could be pursued in the future. In this chapter it was found out that in contrast to pearl necklace and ribbon like formations, particle alignment in zigzag formation provided the best compromise in terms of stability in dispersion (see Figure 44a and Figure 51) while maintaining sufficient flexibility. For this reason, microgel strands in zigzag formation were used for the motion analysis described in Chapter 2.3. The aim was to observe the properties of unrestrained microgel strands in solution (e.g. diffusion behavior, rotational properties and ideally, anisotropic contraction after temperature increase). Initially, 1D microgel strands were manipulated via AFM in a liquid cell setup. It could be observed that the strands required a higher load force compared to single microgels to be detached from the surface. However, with the AFM it was not possible to detach the strands in a controllable manner but resulted in a complete removal of single microgel particles and a tearing off the strands from the surface, respectively. For this reason, to observe the motion behavior of unrestrained microgel strands in solution, confocal microscopy was used. Furthermore, to hinder an adsorption of the strands, it was found out that coating the surface of the substrates with a repulsive polymer film was beneficial. Confocal and wide-field microscopy videos showed that the microgel strands exhibit translational and rotational diffusive motion in solution without perceptible bending. Unfortunately, with these methods the detection of the anisotropic stimuli responsive contraction of the free moving microgel strands was not possible. To summarize, the flexibility of microgel strands is more comparable to the mechanical behavior of a semi flexible cable than to a yarn. The strands studied here consist of dozens or even hundreds of discrete submicron units strung together by cross-linking, having few parallels in nanotechnology. With the insights gained in this work on microgel-surface interactions, in the future, a targeted functionalization of the template and substrate surfaces can be conducted to actively prevent unwanted microgel adsorption for a given microgel system (e.g. PVCL and polystyrene coating235). This measure would make the discussed alignment methods more diverse. As shown herein, the assembly methods enable a versatile microgel alignment (e.g. microgel meshes, double and triple strands). To go further, one could use more complex templates (e.g. ceramic rhombs and star shaped wrinkles (Figure 14) to expand the possibilities of microgel alignment and to precisely control their aspect ratios (e.g. microgel rods with homogeneous size distributions).}, language = {en} } @phdthesis{NaderiMehr2019, author = {Naderi Mehr, Fatemeh}, title = {Preparation and self-assembly behavior of anisotropic polymer patchy particles}, pages = {74, XX}, year = {2019}, language = {en} } @phdthesis{Noack2019, author = {Noack, Sebastian}, title = {Poly(lactide)-based amphiphilic block copolymers}, doi = {10.25932/publishup-43616}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436168}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 148}, year = {2019}, abstract = {Due to its bioavailability and (bio)degradability, poly(lactide) (PLA) is an interesting polymer that is already being used as packaging material, surgical seam, and drug delivery system. Dependent on various parameters such as polymer composition, amphiphilicity, sample preparation, and the enantiomeric purity of lactide, PLA in an amphiphilic block copolymer can affect the self-assembly behavior dramatically. However, sizes and shapes of aggregates have a critical effect on the interactions between biological and drug delivery systems, where the general understanding of these polymers and their ability to influence self-assembly is of significant interest in science. The first part of this thesis describes the synthesis and study of a series of linear poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA)-based amphiphilic block copolymers with varying PLA (hydrophobic), and poly(ethylene glycol) (PEG) (hydrophilic) chain lengths and different block copolymer sequences (PEG-PLA and PLA-PEG). The PEG-PLA block copolymers were synthesized by ring-opening polymerization of lactide initiated by a PEG-OH macroinitiator. In contrast, the PLA-PEG block copolymers were produced by a Steglich-esterification of modified PLA with PEG-OH. The aqueous self-assembly at room temperature of the enantiomerically pure PLLA-based block copolymers and their stereocomplexed mixtures was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Spherical micelles and worm-like structures were produced, whereby the obtained self-assembled morphologies were affected by the lactide weight fraction in the block copolymer and self-assembly time. The formation of worm-like structures increases with decreasing PLA-chain length and arises from spherical micelles, which become colloidally unstable and undergo an epitaxial fusion with other micelles. As shown by DSC experiments, the crystallinity of the corresponding PLA blocks increases within the self-assembly time. However, the stereocomplexed self-assembled structures behave differently from the parent polymers and result in irregular-shaped clusters of spherical micelles. Additionally, time-dependent self-assembly experiments showed a transformation, from already self-assembled morphologies of different shapes to more compact micelles upon stereocomplexation. In the second part of this thesis, with the objective to influence the self-assembly of PLA-based block copolymers and its stereocomplexes, poly(methyl phosphonate) (PMeP) and poly(isopropyl phosphonate) (PiPrP) were produced by ring-opening polymerization to implement an alternative to the hydrophilic block PEG. Although, the 1,8 diazabicyclo[5.4.0]unde 7 ene (DBU) or 1,5,7 triazabicyclo[4.4.0]dec-5-ene (TBD) mediated synthesis of the corresponding poly(alkyl phosphonate)s was successful, however, not so the polymerization of copolymers with PLA-based precursors (PLA-homo polymers, and PEG-PLA block copolymers). Transesterification, obtained by 1H-NMR spectroscopy, between the poly(phosphonate)- and PLA block caused a high-field shifted peak split of the methine proton in the PLA polymer chain, with split intensities depending on the used catalyst (DBU for PMeP, and TBD for PiPrP polymerization). An additional prepared block copolymer PiPrP-PLLA that wasn't affected in its polymer sequence was finally used for self-assembly experiments with PLA-PEG and PEG-PLA mixing. This work provides a comprehensive study of the self-assembly behavior of PLA-based block copolymers influenced by various parameters such as polymer block lengths, self-assembly time, and stereocomplexation of block copolymer mixtures.}, language = {en} } @phdthesis{Walczak2019, author = {Walczak, Ralf}, title = {Molecular design of nitrogen-doped nanoporous noble carbon materials for gas adsorption}, doi = {10.25932/publishup-43524}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435241}, school = {Universit{\"a}t Potsdam}, pages = {II, 155}, year = {2019}, abstract = {In den modernen Gesellschaften f{\"u}hrt ein stetig steigender Energiebedarf zu dem zunehmenden Verbrauch fossiler Brennstoffe wie Kohle, {\"O}l, und Gas. Die Verbrennung dieser kohlenstoffbasierten Brennstoffe f{\"u}hrt unweigerlich zur Freisetzung von Treibhausgasen, vor allem von CO2. Die CO2 Aufnahme unmittelbar bei den Verbrennungsanlagen oder direkt aus der Luft, zusammen mit Regulierung von CO2 produzierenden Energiesektoren (z.B. K{\"u}hlanlagen), k{\"o}nnen den CO2 Ausstoß reduzieren. Allerdings f{\"u}hren insbesondere bei der CO2 Aufnahme die geringen CO2 Konzentrationen und die Aufnahme konkurrierender Gase zu niedrigen CO2 Kapazit{\"a}ten und Selektivit{\"a}ten. Das Zusammenspiel der Gastmolek{\"u}le mit por{\"o}sen Materialien ist dabei essentiell. Por{\"o}se Kohlenstoffmaterialien besitzen attraktive Eigenschaften, unter anderem elektrische Leitf{\"a}higkeit, einstellbare Porosit{\"a}t, als auch chemische und thermische Stabilit{\"a}t. Allerdings f{\"u}hrt die zu geringe Polarisierbarkeit dieser Materialien zu einer geringen Affinit{\"a}t zu polaren Molek{\"u}len (z.B. CO2, H2O, oder NH3). Diese Affinit{\"a}t kann durch den Einbau von Stickstoff erh{\"o}ht werden. Solche Materialien sind oft „edler" als reine Kohlenstoffe, dies bedeutet, dass sie eher oxidierend wirken, als selbst oxidiert zu werden. Die Problematik besteht darin, einen hohen und gleichm{\"a}ßig verteilten Stickstoffgehalt in das Kohlenstoffger{\"u}st einzubauen. Die Zielsetzung dieser Dissertation ist die Erforschung neuer Synthesewege f{\"u}r stickstoffdotierte edle Kohlenstoffmaterialien und die Entwicklung eines grundlegenden Verst{\"a}ndnisses f{\"u}r deren Anwendung in Gasadsorption und elektrochemischer Energiespeicherung. Es wurde eine templatfreie Synthese f{\"u}r stickstoffreiche, edle, und mikropor{\"o}se Kohlenstoffmaterialien durch direkte Kondensation eines stickstoffreichen organischen Molek{\"u}ls als Vorl{\"a}ufer erarbeitet. Dadurch konnten Materialien mit hohen Adsorptionskapazit{\"a}ten f{\"u}r H2O und CO2 bei niedrigen Konzentrationen und moderate CO2/N2 Selektivit{\"a}ten erzielt werden. Um die CO2/N2 Selektivit{\"a}ten zu verbessern, wurden mittels der Einstellung des Kondensationsgrades die molekulare Struktur und Porosit{\"a}t der Kohlenstoffmaterialien kontrolliert. Diese Materialien besitzen die Eigenschaften eines molekularen Siebs f{\"u}r CO2 {\"u}ber N2, das zu herausragenden CO2/N2 Selektivit{\"a}ten f{\"u}hrt. Der ultrahydrophile Charakter der Porenoberfl{\"a}chen und die kleinen Mikroporen dieser Kohlenstoffmaterialien erm{\"o}glichen grundlegende Untersuchungen f{\"u}r die Wechselwirkungen mit Molek{\"u}len die polarer sind als CO2, n{\"a}mlich H2O und NH3. Eine weitere Reihe stickstoffdotierter Kohlenstoffmaterialien wurde durch Kondensation eines konjugierten mikropor{\"o}sen Polymers synthetisiert und deren strukturelle Besonderheiten als Anodenmaterial f{\"u}r die Natriumionen Batterie untersucht. Diese Dissertation leistet einen Beitrag zur Erforschung stickstoffdotierter Kohlenstoffmaterialien und deren Wechselwirkungen mit verschiedenen Gastmolek{\"u}len.}, language = {en} } @phdthesis{Tian2019, author = {Tian, Zhihong}, title = {Oxygen-, Sulfur-doped Novel Porous Carbon-Nitrogen Frameworks by Salt Melt Method}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2019}, language = {en} } @phdthesis{Lai2019, author = {Lai, Feili}, title = {Functionalized ordered mesoporous carbon materials for enhancing the energy density of supercapacitors}, school = {Universit{\"a}t Potsdam}, pages = {115}, year = {2019}, language = {en} } @phdthesis{Sarhan2019, author = {Sarhan, Radwan Mohamed}, title = {Plasmon-driven photocatalytic reactions monitored by surface-enhanced Raman spectroscopy}, doi = {10.25932/publishup-43330}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433304}, school = {Universit{\"a}t Potsdam}, year = {2019}, abstract = {Plasmonic metal nanostructures can be tuned to efficiently interact with light, converting the photons into energetic charge carriers and heat. Therefore, the plasmonic nanoparticles such as gold and silver nanoparticles act as nano-reactors, where the molecules attached to their surfaces benefit from the enhanced electromagnetic field along with the generated energetic charge carriers and heat for possible chemical transformations. Hence, plasmonic chemistry presents metal nanoparticles as a unique playground for chemical reactions on the nanoscale remotely controlled by light. However, defining the elementary concepts behind these reactions represents the main challenge for understanding their mechanism in the context of the plasmonically assisted chemistry. Surface-enhanced Raman scattering (SERS) is a powerful technique employing the plasmon-enhanced electromagnetic field, which can be used for probing the vibrational modes of molecules adsorbed on plasmonic nanoparticles. In this cumulative dissertation, I use SERS to probe the dimerization reaction of 4-nitrothiophenol (4-NTP) as a model example of plasmonic chemistry. I first demonstrate that plasmonic nanostructures such as gold nanotriangles and nanoflowers have a high SERS efficiency, as evidenced by probing the vibrations of the rhodamine dye R6G and the 4-nitrothiophenol 4-NTP. The high signal enhancement enabled the measurements of SERS spectra with a short acquisition time, which allows monitoring the kinetics of chemical reactions in real time. To get insight into the reaction mechanism, several time-dependent SERS measurements of the 4-NTP have been performed under different laser and temperature conditions. Analysis of the results within a mechanistic framework has shown that the plasmonic heating significantly enhances the reaction rate, while the reaction is probably initiated by the energetic electrons. The reaction was shown to be intensity-dependent, where a certain light intensity is required to drive the reaction. Finally, first attempts to scale up the plasmonic catalysis have been performed showing the necessity to achieve the reaction threshold intensity. Meanwhile, the induced heat needs to quickly dissipate from the reaction substrate, since otherwise the reactants and the reaction platform melt. This study might open the way for further work seeking the possibilities to quickly dissipate the plasmonic heat generated during the reaction and therefore, scaling up the plasmonic catalysis.}, language = {en} } @phdthesis{RuizRodriguez2019, author = {Ruiz Rodriguez, Janete Lorena}, title = {Osmotic pressure effects on collagen mimetic peptides}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, abstract = {Collagen is the most abundant protein in mammals. In many tissues, collagen molecules assemble to form a hierarchical structure. In the smallest supramolecular unit, named fibril, each molecule is displaced in the axial direction with respect to its neighbors. This staggering creates a periodic gap and overlap regions, where the gap regions exhibit 20\% less density. These fibril-forming collagens play an essential role in the strength of connective tissues. Despite much effort, directed at understanding collagen function and regulation, the influence of the chemical environment on the local structural and mechanical properties remains poorly understood. Recent studies, aimed at elucidating the effect of osmotic pressure, showed that collagen contracts upon water removal. This observation highlights the importance of water for the stabilization and mechanics of the collagen molecule. Using collagen mimetic peptides (CMPs), which fold into triple helical structures reminiscent of natural collagen, the primary goal of this work was to investigate the effect of the osmotic pressure on specific collagen-mimetic sequences. CMPs were used as the model system as they provide sequence control, which is essential for discriminating local from global structural changes and for relating the observed effects to existing knowledge about the full-length collagen molecule. Of specific interest was the structure of individual collagen triple helices as well as their organization into self-assembled higher order structures. These key structural features were monitored with infrared spectroscopy (IR) and synchrotron X-ray scattering, while varying the osmotic pressure. For controlling the osmotic pressure, CMP powder samples were incubated in air of defined relative humidity, ranging from dry conditions to highly "humid". In addition, to obtain more biologically relevant conditions, the CMPs were measured in ultrapure water and in solutions containing small molecule osmolytes. Using the sequences (Pro-Pro-Gly)10, (Pro-Hyp-Gly)10 and (Hyp-Hyp-Gly)10, it was shown that CMPs with different degrees of proline hydroxylation (Hyp = hydroxyproline) exhibit a sequence-specific response to osmotic pressure. IR spectroscopy revealed that osmotic pressure changes affect the strength of the triple helix stabilizing, interchain hydrogen bond and that the extent of this change depends on the degree of hydroxylation. X-ray scattering experiments further showed that changes in osmotic pressure affect both the molecular length as well as the higher order organization of CMPs. Starting from a pseudo-hexagonal packing in the dry state, all three CMPs showed isotropic swelling when increasing the water content to approximately 1.2 water molecules per amino acid, again to different extents depending on the degree of hydroxylation. When increasing the water content further, this pseudo-hexagonal arrangement breaks down. In the fully hydrated state, each CMP is characterized by its own specific and more complex packing geometry. While these changes in the lateral packing arrangement suggest swelling upon hydration, an overall decrease of the molecular length (i.e. contraction) was observed in the axial direction. Also for this structural feature, a strong dependency on the specific amino acid sequence was found. Interestingly, the observed contraction is the opposite of what has been reported for natural collagen. As (Pro-Pro-Gly)n, (Pro-Hyp-Gly)n and (Hyp-Hyp-Gly)n repeat units are found in collagen with a relatively high abundance, this suggests that other collagen sequence fragments need to respond to hydration in the opposite way to obtain a net elongation of the full-length collagen molecule. To test this hypothesis, sequences predicted to be sensitive to osmotic pressure were considered. One such sequence, consisting of two repeat units (Ala-Arg-Gly-Ser-Asp-Gly), was inserted as a guest into a (Pro-Pro-Gly) host. When compared to the canonical CMP sequences investigated earlier, the lateral helix packing follows a similar trend with increasing hydration; however, the host-guest CMP axially elongates with increasing water content. This behavior is more similar to what has been found for natural collagen and suggests that different sequences do determine the molecular length of collagen sequences differently. Interestingly, the canonical sequences are more abundant in the overlap region while the guest sequence is found in the gap region. This allows to speculate that sequences in the gap and overlap regions possess a specifically fine-tuned local response to osmotic pressure changes. Clearly, more experiments with additional sequences are needed to confirm this. In conclusion, the results obtained in this work indicate a highly sequence specific interaction between collagen and water. Osmotic pressure-induced conformational changes mostly originate from local geometries and bonding patterns and affect both the structure of individual triple helices as well as higher order assemblies. One key remaining question is how these conformational changes affect the local mechanical properties of the collagen molecule. As a first step, the stiffness (persistence length) of full-length collagen was determined using atomic force microscopy. In the future, experimental strategies need to be developed that allow for investigating the mechanical properties of specific collagen sequences, e.g. performing single-molecule force spectroscopy of CMPs.}, language = {en} } @phdthesis{Yan2019, author = {Yan, Runyu}, title = {Nitrogen-doped and porous carbons towards new energy storage mechanisms for supercapacitors with high energy density}, doi = {10.25932/publishup-43141}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431413}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2019}, abstract = {Supercapacitors are electrochemical energy storage devices with rapid charge/discharge rate and long cycle life. Their biggest challenge is the inferior energy density compared to other electrochemical energy storage devices such as batteries. Being the most widely spread type of supercapacitors, electrochemical double-layer capacitors (EDLCs) store energy by electrosorption of electrolyte ions on the surface of charged electrodes. As a more recent development, Na-ion capacitors (NICs) are expected to be a more promising tactic to tackle the inferior energy density due to their higher-capacity electrodes and larger operating voltage. The charges are simultaneously stored by ion adsorption on the capacitive-type cathode surface and via faradic process in the battery-type anode, respectively. Porous carbon electrodes are of great importance in these devices, but the paramount problems are the facile synthetic routes for high-performance carbons and the lack of fundamental understanding of the energy storage mechanisms. Therefore, the aim of the present dissertation is to develop novel synthetic methods for (nitrogen-doped) porous carbon materials with superior performance, and to reveal a deeper understanding energy storage mechanisms of EDLCs and NICs. The first part introduces a novel synthetic method towards hierarchical ordered meso-microporous carbon electrode materials for EDLCs. The large amount of micropores and highly ordered mesopores endow abundant sites for charge storage and efficient electrolyte transport, respectively, giving rise to superior EDLC performance in different electrolytes. More importantly, the controversial energy storage mechanism of EDLCs employing ionic liquid (IL) electrolytes is investigated by employing a series of porous model carbons as electrodes. The results not only allow to conclude on the relations between the porosity and ion transport dynamics, but also deliver deeper insights into the energy storage mechanism of IL-based EDLCs which is different from the one usually dominating in solvent-based electrolytes leading to compression double-layers. The other part focuses on anodes of NICs, where novel synthesis of nitrogen-rich porous carbon electrodes and their sodium storage mechanism are investigated. Free-standing fibrous nitrogen-doped carbon materials are synthesized by electrospinning using the nitrogen-rich monomer (hexaazatriphenylene-hexacarbonitrile, C18N12) as the precursor followed by condensation at high temperature. These fibers provide superior capacity and desirable charge/discharge rate for sodium storage. This work also allows insights into the sodium storage mechanism in nitrogen-doped carbons. Based on this mechanism, further optimization is done by designing a composite material composed of nitrogen-rich carbon nanoparticles embedded in conductive carbon matrix for a better charge/discharge rate. The energy density of the assembled NICs significantly prevails that of common EDLCs while maintaining the high power density and long cycle life.}, language = {en} } @phdthesis{Jiang2019, author = {Jiang, Yi}, title = {Tailoring surface functions of micro/nanostructured polymeric substrates by thermo-mechanical treatments}, school = {Universit{\"a}t Potsdam}, pages = {93}, year = {2019}, language = {en} } @phdthesis{AlNakeeb2019, author = {Al Nakeeb, Noah}, title = {Self-assembly and crosslinking approaches of double hydrophilic linear-brush block copolymers}, pages = {133}, year = {2019}, language = {en} }