@phdthesis{Lubitz2017, author = {Lubitz, Christin}, title = {Investigating local surface displacements associated with anthropogenic activities by satellite radar interferometry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416001}, school = {Universit{\"a}t Potsdam}, pages = {III, vii, 96, xii}, year = {2017}, abstract = {Direct anthropogenic influences on the Earth's subsurface during drilling, extraction or injection activities, can affect land stability by causing subsidence, uplifts or lateral displacements. They can occur in localized as well as in uninhabited and inhabited regions. Thus the associated risks for humans, infrastructure, and environment must be minimized. To achieve this, appropriate surveillance methods must be found that can be used for simultaneous monitoring during such activities. Multi-temporal synthetic aperture radar interferometry (MT-InSAR) methods like the Persistent Scatterer Interferometry (PSI) and the Small BAseline Subsets (SBAS) have been developed as standard approaches for satellite-based surface displacement monitoring. With increasing spatial resolution and availability of SAR sensors in recent years, MT-InSAR can be valuable for the detection and mapping of even the smallest man-made displacements. This doctoral thesis aims at investigating the capacities of the mentioned standard methods for this purpose, and comprises three main objectives against the backdrop of a user-friendly surveillance service: (1) the spatial and temporal significance assessment against leveling, (2) the suitability evaluation of PSI and SBAS under different conditions, and (3) the analysis of the link between surface motion and subsurface processes. Two prominent case studies on anthropogenic induced subsurface processes in Germany serve as the basis for this goal. The first is the distinct urban uplift with severe damages at Staufen im Breisgau that has been associated since 2007 with a failure to implement a shallow geothermal energy supply for an individual building. The second case study considers the pilot project of geological carbon dioxide (CO2) storage at Ketzin, and comprises borehole drilling and fluid injection of more than 67 kt CO2 between 2008 and 2013. Leveling surveys at Staufen and comprehensive background knowledge of the underground processes gained from different kinds of in-situ measurements at both locations deliver a suitable basis for this comparative study and the above stated objectives. The differences in location setting, i.e. urban versus rural site character, were intended to investigate the limitations in the applicability of PSI and SBAS. For the MT-InSAR analysis, X-band images from the German TerraSAR-X and TanDEM-X satellites were acquired in the standard Stripmap mode with about 3 m spatial resolution in azimuth and range direction. Data acquisition lasted over a period of five years for Staufen (2008-2013), and four years for Ketzin (2009-2013). For the first approximation of the subsurface source, an inversion of the InSAR outcome in Staufen was applied. The modeled uplift based on complex hydromechanical simulations and a correlation analysis with bottomhole pressure data were used for comparison with MT-InSAR measurements at Ketzin. In response to the defined objectives of this thesis, a higher level of detail can be achieved in mapping surface displacements without in-situ effort by using MT-InSAR in comparison to leveling (1). A clear delineation of the elliptical shaped uplift border and its magnitudes at different parts was possible at Staufen, with the exception of a vegetated area in the northwest. Vegetation coverage and the associated temporal signal decorrelation are the main limitations of MT-InSAR as clearly demonstrated at the Ketzin test site. They result in insufficient measurement point density and unwrapping issues. Therefore, spatial resolutions of one meter or better are recommended to achieve an adequate point density for local displacement analysis and to apply signal noise reduction. Leveling measurements can provide a complementary data source here, but require much effort pertaining to personnel even at the local scale. Horizontal motions could be identified at Staufen by only comparing the temporal evolution of the 1D line of sight (LOS) InSAR measurements with the available leveling data. An exception was the independent LOS decomposition using ascending and descending data sets for the period 2012-2013. The full 3D displacement field representation failed due to insufficient orbit-related, north-south sensitivity of the satellite-based measurements. By using the dense temporal mapping capabilities of the TerraSAR-X/TanDEM-X satellites after every 11 days, the temporal displacement evolution could be captured as good as that with leveling. With respect to the tested methods and in the view of generality, SBAS should be preferred over PSI (2). SBAS delivered a higher point density, and was therefore less affected by phase unwrapping issues in both case studies. Linking surface motions with subsurface processes is possible when considering simplified geophysical models (3), but it still requires intensive research to gain a deep understanding.}, language = {en} }