@article{Marwan2023, author = {Marwan, Norbert}, title = {Challenges and perspectives in recurrence analyses of event time series}, series = {Frontiers in applied mathematics and statistics}, volume = {9}, journal = {Frontiers in applied mathematics and statistics}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2297-4687}, doi = {10.3389/fams.2023.1129105}, pages = {7}, year = {2023}, abstract = {The analysis of event time series is in general challenging. Most time series analysis tools are limited for the analysis of this kind of data. Recurrence analysis, a powerful concept from nonlinear time series analysis, provides several opportunities to work with event data and even for the most challenging task of comparing event time series with continuous time series. Here, the basic concept is introduced, the challenges are discussed, and the future perspectives are summarized.}, language = {en} } @article{Pikovskij2021, author = {Pikovskij, Arkadij}, title = {Transition to synchrony in chiral active particles}, series = {Journal of physics. Complexity}, volume = {2}, journal = {Journal of physics. Complexity}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2632-072X}, doi = {10.1088/2632-072X/abdadb}, pages = {8}, year = {2021}, abstract = {I study deterministic dynamics of chiral active particles in two dimensions. Particles are considered as discs interacting with elastic repulsive forces. An ensemble of particles, started from random initial conditions, demonstrates chaotic collisions resulting in their normal diffusion. This chaos is transient, as rather abruptly a synchronous collisionless state establishes. The life time of chaos grows exponentially with the number of particles. External forcing (periodic or chaotic) is shown to facilitate the synchronization transition.}, language = {en} } @article{OcampoEspindolaOmel'chenkoKiss2021, author = {Ocampo-Espindola, Jorge Luis and Omel'chenko, Oleh and Kiss, Istvan Z.}, title = {Non-monotonic transients to synchrony in Kuramoto networks and electrochemical oscillators}, series = {Journal of physics. Complexity}, volume = {2}, journal = {Journal of physics. Complexity}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2632-072X}, doi = {10.1088/2632-072X/abe109}, pages = {15}, year = {2021}, abstract = {We performed numerical simulations with the Kuramoto model and experiments with oscillatory nickel electrodissolution to explore the dynamical features of the transients from random initial conditions to a fully synchronized (one-cluster) state. The numerical simulations revealed that certain networks (e.g., globally coupled or dense Erdos-Renyi random networks) showed relatively simple behavior with monotonic increase of the Kuramoto order parameter from the random initial condition to the fully synchronized state and that the transient times exhibited a unimodal distribution. However, some modular networks with bridge elements were identified which exhibited non-monotonic variation of the order parameter with local maximum and/or minimum. In these networks, the histogram of the transients times became bimodal and the mean transient time scaled well with inverse of the magnitude of the second largest eigenvalue of the network Laplacian matrix. The non-monotonic transients increase the relative standard deviations from about 0.3 to 0.5, i.e., the transient times became more diverse. The non-monotonic transients are related to generation of phase patterns where the modules are synchronized but approximately anti-phase to each other. The predictions of the numerical simulations were demonstrated in a population of coupled oscillatory electrochemical reactions in global, modular, and irregular tree networks. The findings clarify the role of network structure in generation of complex transients that can, for example, play a role in intermittent desynchronization of the circadian clock due to external cues or in deep brain stimulations where long transients are required after a desynchronization stimulus.}, language = {en} } @article{Pikovskij2021, author = {Pikovskij, Arkadij}, title = {Synchronization of oscillators with hyperbolic chaotic phases}, series = {Izvestija vysšich učebnych zavedenij : naučno-techničeskij žurnal = Izvestiya VUZ. Prikladnaja nelinejnaja dinamika = Applied nonlinear dynamics}, volume = {29}, journal = {Izvestija vysšich učebnych zavedenij : naučno-techničeskij žurnal = Izvestiya VUZ. Prikladnaja nelinejnaja dinamika = Applied nonlinear dynamics}, number = {1}, publisher = {Saratov State University}, address = {Saratov}, issn = {0869-6632}, doi = {10.18500/0869-6632-2021-29-1-78-87}, pages = {78 -- 87}, year = {2021}, abstract = {Topic and aim. Synchronization in populations of coupled oscillators can be characterized with order parameters that describe collective order in ensembles. A dependence of the order parameter on the coupling constants is well-known for coupled periodic oscillators. The goal of the study is to extend this analysis to ensembles of oscillators with chaotic phases, moreover with phases possessing hyperbolic chaos. Models and methods. Two models are studied in the paper. One is an abstract discrete-time map, composed with a hyperbolic Bernoulli transformation and with Kuramoto dynamics. Another model is a system of coupled continuous-time chaotic oscillators, where each individual oscillator has a hyperbolic attractor of Smale-Williams type. Results. The discrete-time model is studied with the Ott-Antonsen ansatz, which is shown to be invariant under the application of the Bernoulli map. The analysis of the resulting map for the order parameter shows, that the asynchronouis state is always stable, but the synchronous one becomes stable above a certain coupling strength. Numerical analysis of the continuous-time model reveals a complex sequence of transitions from an asynchronous state to a completely synchronous hyperbolic chaos, with intermediate stages that include regimes with periodic in time mean field, as well as with weakly and strongly irregular mean field variations. Discussion. Results demonstrate that synchronization of systems with hyperbolic chaos of phases is possible, although a rather strong coupling is required. The approach can be applied to other systems of interacting units with hyperbolic chaotic dynamics.}, language = {en} } @article{SchaeferBittmann2021, author = {Schaefer, Laura and Bittmann, Frank}, title = {Paired personal interaction reveals objective differences between pushing and holding isometric muscle action}, series = {PLOS One}, volume = {16}, journal = {PLOS One}, number = {5}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0238331}, pages = {21}, year = {2021}, abstract = {In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80\% MVIC) and two fatiguing trials (90\% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A "HIMA failure" occurred in 85\% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA.}, language = {en} } @article{Omelʹchenko2020, author = {Omelʹchenko, Oleh E.}, title = {Nonstationary coherence-incoherence patterns in nonlocally coupled heterogeneous phase oscillators}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5145259}, pages = {8}, year = {2020}, abstract = {We consider a large ring of nonlocally coupled phase oscillators and show that apart from stationary chimera states, this system also supports nonstationary coherence-incoherence patterns (CIPs). For identical oscillators, these CIPs behave as breathing chimera states and are found in a relatively small parameter region only. It turns out that the stability region of these states enlarges dramatically if a certain amount of spatially uniform heterogeneity (e.g., Lorentzian distribution of natural frequencies) is introduced in the system. In this case, nonstationary CIPs can be studied as stable quasiperiodic solutions of a corresponding mean-field equation, formally describing the infinite system limit. Carrying out direct numerical simulations of the mean-field equation, we find different types of nonstationary CIPs with pulsing and/or alternating chimera-like behavior. Moreover, we reveal a complex bifurcation scenario underlying the transformation of these CIPs into each other. These theoretical predictions are confirmed by numerical simulations of the original coupled oscillator system.}, language = {en} } @article{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Hydrology and Earth System Sciences}, volume = {24}, journal = {Hydrology and Earth System Sciences}, number = {5}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-24-2235-2020}, pages = {2235 -- 2251}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @article{vanVelzenThieserBerendonketal.2018, author = {van Velzen, Ellen and Thieser, Tamara and Berendonk, Thomas U. and Weitere, Markus and Gaedke, Ursula}, title = {Inducible defense destabilizes predator-prey dynamics}, series = {Oikos}, volume = {127}, journal = {Oikos}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.04868}, pages = {1551 -- 1562}, year = {2018}, abstract = {Phenotypic plasticity in prey can have a dramatic impact on predator-prey dynamics, e.g. by inducible defense against temporally varying levels of predation. Previous work has overwhelmingly shown that this effect is stabilizing: inducible defenses dampen the amplitudes of population oscillations or eliminate them altogether. However, such studies have neglected scenarios where being protected against one predator increases vulnerability to another (incompatible defense). Here we develop a model for such a scenario, using two distinct prey phenotypes and two predator species. Each prey phenotype is defended against one of the predators, and vulnerable to the other. In strong contrast with previous studies on the dynamic effects of plasticity involving a single predator, we find that increasing the level of plasticity consistently destabilizes the system, as measured by the amplitude of oscillations and the coefficients of variation of both total prey and total predator biomasses. We explain this unexpected and seemingly counterintuitive result by showing that plasticity causes synchronization between the two prey phenotypes (and, through this, between the predators), thus increasing the temporal variability in biomass dynamics. These results challenge the common view that plasticity should always have a stabilizing effect on biomass dynamics: adding a single predator-prey interaction to an established model structure gives rise to a system where different mechanisms may be at play, leading to dramatically different outcomes.}, language = {en} } @article{ChristgauSchnor2017, author = {Christgau, Steffen and Schnor, Bettina}, title = {Exploring one-sided communication and synchronization on a non-cache-coherent many-core architecture}, series = {Concurrency and computation : practice \& experience}, volume = {29}, journal = {Concurrency and computation : practice \& experience}, publisher = {Wiley}, address = {Hoboken}, issn = {1532-0626}, doi = {10.1002/cpe.4113}, pages = {15}, year = {2017}, abstract = {The ongoing many-core design aims at core counts where cache coherence becomes a serious challenge. Therefore, this paper discusses how one-sided communication and the required process synchronization can be realized on a non-cache-coherent many-core CPU. The Intel Single-chip Cloud Computer serves as an exemplary hardware architecture. The presented approach is based on software-managed cache coherence for MPI one-sided communication. The prototype implementation delivers a PUT performance of up to 5 times faster than the default message-based approach and reveals a reduction of the communication costs for the NAS Parallel Benchmarks 3-D fast Fourier Transform by a factor of 5. Further, the paper derives conclusions for future non-cache-coherent architectures.}, language = {en} } @article{ClusellaPolitiRosenblum2016, author = {Clusella, Pau and Politi, Antonio and Rosenblum, Michael}, title = {A minimal model of self-consistent partial synchrony}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/9/093037}, pages = {15}, year = {2016}, abstract = {We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field.}, language = {en} } @article{VlasovKomarovPikovskij2015, author = {Vlasov, Vladimir and Komarov, Maxim and Pikovskij, Arkadij}, title = {Synchronization transitions in ensembles of noisy oscillators with bi-harmonic coupling}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {48}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/48/10/105101}, pages = {16}, year = {2015}, abstract = {We describe synchronization transitions in an ensemble of globally coupled phase oscillators with a bi-harmonic coupling function, and two sources of disorder-diversity of the intrinsic oscillators' frequencies, and external independent noise forces. Based on the self-consistent formulation, we derive analytic solutions for different synchronous states. We report on various non-trivial transitions from incoherence to synchrony, with the following possible scenarios: simple supercritical transition (similar to classical Kuramoto model); subcritical transition with large area of bistability of incoherent and synchronous solutions; appearance of a symmetric two-cluster solution which can coexist with the regular synchronous state. We show that the interplay between relatively small white noise and finite-size fluctuations can lead to metastability of the asynchronous solution.}, language = {en} } @article{LaubrockKliegl2015, author = {Laubrock, Jochen and Kliegl, Reinhold}, title = {The eye-voice span during reading aloud}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.01437}, pages = {19}, year = {2015}, abstract = {Although eye movements during reading are modulated by cognitive processing demands, they also reflect visual sampling of the input, and possibly preparation of output for speech or the inner voice. By simultaneously recording eye movements and the voice during reading aloud, we obtained an output measure that constrains the length of time spent on cognitive processing. Here we investigate the dynamics of the eye-voice span (EVS), the distance between eye and voice. We show that the EVS is regulated immediately during fixation of a word by either increasing fixation duration or programming a regressive eye movement against the reading direction. EVS size at the beginning of a fixation was positively correlated with the likelihood of regressions and refixations. Regression probability was further increased if the EVS was still large at the end of a fixation: if adjustment of fixation duration did not sufficiently reduce the EVS during a fixation, then a regression rather than a refixation followed with high probability. We further show that the EVS can help understand cognitive influences on fixation duration during reading: in mixed model analyses, the EVS was a stronger predictor of fixation durations than either word frequency or word length. The EVS modulated the influence of several other predictors on single fixation durations (SFDs). For example, word-N frequency effects were larger with a large EVS, especially when word N-1 frequency was low. Finally, a comparison of SFDs during oral and silent reading showed that reading is governed by similar principles in both reading modes, although EVS maintenance and articulatory processing also cause some differences. In summary, the EVS is regulated by adjusting fixation duration and/or by programming a regressive eye movement when the EVS gets too large. Overall, the EVS appears to be directly related to updating of the working memory buffer during reading.}, language = {en} } @article{LaubrockKliegl2015, author = {Laubrock, Jochen and Kliegl, Reinhold}, title = {The eye-voice span during reading aloud}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, number = {1432}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.01432}, year = {2015}, abstract = {Although eye movements during reading are modulated by cognitive processing demands, they also reflect visual sampling of the input, and possibly preparation of output for speech or the inner voice. By simultaneously recording eye movements and the voice during reading aloud, we obtained an output measure that constrains the length of time spent on cognitive processing. Here we investigate the dynamics of the eye-voice span (EVS), the distance between eye and voice. We show that the EVS is regulated immediately during fixation of a word by either increasing fixation duration or programming a regressive eye movement against the reading direction. EVS size at the beginning of a fixation was positively correlated with the likelihood of regressions and refixations. Regression probability was further increased if the EVS was still large at the end of a fixation: if adjustment of fixation duration did not sufficiently reduce the EVS during a fixation, then a regression rather than a refixation followed with high probability. We further show that the EVS can help understand cognitive influences on fixation duration during reading: in mixed model analyses, the EVS was a stronger predictor of fixation durations than either word frequency or word length. The EVS modulated the influence of several other predictors on single fixation durations (SFDs). For example, word-N frequency effects were larger with a large EVS, especially when word N-1 frequency was low. Finally, a comparison of SFDs during oral and silent reading showed that reading is governed by similar principles in both reading modes, although EVS maintenance and articulatory processing also cause some differences. In summary, the EVS is regulated by adjusting fixation duration and/or by programming a regressive eye movement when the EVS gets too large. Overall, the EVS appears to be directly related to updating of the working memory buffer during reading.}, language = {en} } @article{PollatosYeldesbayPikovskijetal.2014, author = {Pollatos, Olga and Yeldesbay, Azamat and Pikovskij, Arkadij and Rosenblum, Michael}, title = {How much time has passed? Ask your heart}, series = {Frontiers in neurorobotics}, volume = {8}, journal = {Frontiers in neurorobotics}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5218}, doi = {10.3389/fnbot.2014.00015}, pages = {1 -- 9}, year = {2014}, abstract = {Internal signals like one's heartbeats are centrally processed via specific pathways and both their neural representations as well as their conscious perception (interoception) provide key information for many cognitive processes. Recent empirical findings propose that neural processes in the insular cortex, which are related to bodily signals, might constitute a neurophysiological mechanism for the encoding of duration. Nevertheless, the exact nature of such a proposed relationship remains unclear. We aimed to address this question by searching for the effects of cardiac rhythm on time perception by the use of a duration reproduction paradigm. Time intervals used were of 0.5, 2, 3, 7, 10, 14, 25, and 40s length. In a framework of synchronization hypothesis, measures of phase locking between the cardiac cycle and start/stop signals of the reproduction task were calculated to quantify this relationship. The main result is that marginally significant synchronization indices (Sls) between the heart cycle and the time reproduction responses for the time intervals of 2, 3, 10, 14, and 25s length were obtained, while results were not significant for durations of 0.5, 7, and 40s length. On the single participant level, several subjects exhibited some synchrony between the heart cycle and the time reproduction responses, most pronounced for the time interval of 25s (8 out of 23 participants for 20\% quantile). Better time reproduction accuracy was not related with larger degree of phase locking, but with greater vagal control of the heart. A higher interoceptive sensitivity (IS) was associated with a higher synchronization index (SI) for the 2s time interval only. We conclude that information obtained from the cardiac cycle is relevant for the encoding and reproduction of time in the time span of 2-25s. Sympathovagal tone as well as interoceptive processes mediate the accuracy of time estimation.}, language = {en} } @article{FrascaBergnerKurthsetal.2012, author = {Frasca, Mattia and Bergner, Andre and Kurths, J{\"u}rgen and Fortuna, Luigi}, title = {Bifurcations in a star-like network of Stuart-Landau oscillators}, series = {International journal of bifurcation and chaos : in applied sciences and engineering}, volume = {22}, journal = {International journal of bifurcation and chaos : in applied sciences and engineering}, number = {7}, publisher = {World Scientific}, address = {Singapore}, issn = {0218-1274}, doi = {10.1142/S0218127412501738}, pages = {13}, year = {2012}, abstract = {In this paper, we analytically study a star motif of Stuart-Landau oscillators, derive the bifurcation diagram and discuss the different forms of synchronization arising in such a system. Despite the parameter mismatch between the central node and the peripheral ones, an analytical approach independent of the number of units in the system has been proposed. The approach allows to calculate the separatrices between the regions with distinct dynamical behavior and to determine the nature of the different transitions to synchronization appearing in the system. The theoretical analysis is supported by numerical results.}, language = {en} }