@article{HenkelKlimchitskayaMostepanenko2018, author = {Henkel, Carsten and Klimchitskaya, G. L. and Mostepanenko, V. M.}, title = {Influence of the chemical potential on the Casimir-Polder interaction between an atom and gapped graphene or a graphene-coated substrate}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {97}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.97.032504}, pages = {12}, year = {2018}, abstract = {We present a formalism based on first principles of quantum electrodynamics at nonzero temperature which permits us to calculate the Casimir-Polder interaction between an atom and a graphene sheet with arbitrary mass gap and chemical potential, including graphene-coated substrates. The free energy and force of the Casimir-Polder interaction are expressed via the polarization tensor of graphene in (2 + 1)-dimensional space-time in the framework of the Dirac model. The obtained expressions are used to investigate the influence of the chemical potential of graphene on the Casimir-Polder interaction. Computations are performed for an atom of metastable helium interacting with either a freestanding graphene sheet or a graphene-coated substrate made of amorphous silica. It is shown that the impacts of the nonzero chemical potential and the mass gap on the Casimir-Polder interaction are in opposite directions, by increasing and decreasing the magnitudes of the free energy and force, respectively. It turns out, however, that the temperature-dependent part of the Casimir-Polder interaction is decreased by a nonzero chemical potential, whereas the mass gap increases it compared to the case of undoped, gapless graphene. The physical explanation for these effects is provided. Numerical computations of the Casimir-Polder interaction are performed at various temperatures and atom-graphene separations.}, language = {en} }