@article{ChenBaldermannCaoetal.2015, author = {Chen, Xiaomin and Baldermann, Susanne and Cao, Shuyan and Lu, Yao and Liu, Caixia and Hirata, Hiroshi and Watanabe, Naoharu}, title = {Developmental patterns of emission of scent compounds and related gene expression in roses of the cultivar Rosa x hybrida cv. 'Yves Piaget'}, series = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, volume = {87}, journal = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, publisher = {Elsevier}, address = {Paris}, issn = {0981-9428}, doi = {10.1016/j.plaphy.2014.12.016}, pages = {109 -- 114}, year = {2015}, abstract = {2-Phenylethanol (2PE) and 3,5-dimethoxytoluene (DMT) are characteristic scent compounds in specific roses such as Rosa x hybrida cv. 'Yves Piaget'. We analyzed the endogenous concentrations and emission of 2PE and DMT during the unfurling process in different floral organs, as well as changes in transcript levels of the two key genes, PAR and OOMT2. The emission of both 2PE and DMT increased during floral development to reach peaks at the fully unfurled stage. The relative transcripts of PAR and OOMT2 also increased during floral development. Whereas the maximum for OOMT2 was found at the fully unfurled stage (stage 4), similar expression levels of PAR were detected at stage 4 and the senescence stage (stage 6). The results demonstrate a positive correlation between the expression levels of PAR and OOMT2 and the emission of 2PE and DMT. In addition, endogenous volatiles and relative transcripts showed tissue- and development-specific patterns. (C) 2014 Elsevier Masson SAS. All rights reserved.}, language = {en} } @article{ZhouZhangGuietal.2015, author = {Zhou, Ying and Zhang, Ling and Gui, Jiadong and Dong, Fang and Cheng, Sihua and Mei, Xin and Zhang, Linyun and Li, Yongqing and Su, Xinguo and Baldermann, Susanne and Watanabe, Naoharu and Yang, Ziyin}, title = {Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis}, series = {Plant molecular biology reporter}, volume = {33}, journal = {Plant molecular biology reporter}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0735-9640}, doi = {10.1007/s11105-014-0751-z}, pages = {253 -- 263}, year = {2015}, abstract = {Camellia sinensis synthesizes and emits a large variety of volatile phenylpropanoids and benzenoids (VPB). To investigate the enzymes involved in the formation of these VPB compounds, a new C. sinensis short-chain dehydrogenase/reductase (CsSDR) was isolated, cloned, sequenced, and functionally characterized. The complete open reading frame of CsSDR contains 996 nucleotides with a calculated protein molecular mass of 34.5 kDa. The CsSDR recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several major VPB compounds in C. sinensis flowers with a strong preference for NADP/NADPH co-factors, and showed affinity for (R)/(S)-1-phenylethanol (1PE), phenylacetaldehyde, benzaldehyde, and benzyl alcohol, and no affinity for acetophenone (AP) and 2-phenylethanol. CsSDR showed the highest catalytic efficiency towards (R)/(S)-1PE. Furthermore, the transient expression analysis in Nicotiana benthamiana plants validated that CsSDR could convert 1PE to AP in plants. CsSDR transcript level was not significantly affected by floral development and some jasmonic acid-related environmental stress, and CsSDR transcript accumulation was detected in most floral tissues such as receptacle and anther, which were main storage locations of VPB compounds. Our results indicate that CsSDR is expressed in C. sinensis flowers and is likely to contribute to a number of floral VPB compounds including the 1PE derivative AP.}, language = {en} } @article{ErrardUlrichsKuehneetal.2015, author = {Errard, Audrey and Ulrichs, Christian and Kuehne, Stefan and Mewis, Inga and Drungowski, Mario and Schreiner, Monika and Baldermann, Susanne}, title = {Single- versus multiple-pest infestation affects differently the Biochemistry of Tomato (Solanum lycopersicum 'Ailsa Craig')}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {63}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.5b03884}, pages = {10103 -- 10111}, year = {2015}, abstract = {Tomato is susceptible to pest infestations by both spider mites and aphids. The effects of each individual pest on plants are known, whereas multiple-pest infestations have received little interest. We studied the effects of single-versus multiple-pest infestation by Tetranychus urticae and Myzus persicae on tomato biochemistry (Solanum lycopersicum) by combining a metabolomic approach and analyses of carotenoids using UHPLC-ToF-MS and volatiles using GC-MS. Plants responded differently to aphids and mites after 3 weeks of infestation, and a multiple infestation induced a specific metabolite composition in plants. In addition, we showed that volatiles emissions differed between the adaxial and abaxial leaf epidermes and identified compounds emitted particularly in response to a multiple infestation (cyclohexadecane, dodecane, aromadendrene, and beta-elemene). Finally, the carotenoid concentrations in leaves and stems were more affected by multiple than single infestations. Our study highlights and discusses the interplay of biotic stressors within the terpenoid metabolism.}, language = {en} } @article{ErrardBaldermannKuehneetal.2015, author = {Errard, Audrey and Baldermann, Susanne and K{\"u}hne, Stefan and Mewis, Inga and Peterkin, John and Ulrichs, Christian}, title = {Interspecific Interactions Affect Pests Differently}, series = {Gesunde Pflanzen : Pflanzenschutz, Verbraucherschutz, Umweltschutz}, volume = {67}, journal = {Gesunde Pflanzen : Pflanzenschutz, Verbraucherschutz, Umweltschutz}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0367-4223}, doi = {10.1007/s10343-015-0349-x}, pages = {183 -- 190}, year = {2015}, abstract = {Spider mites, Tetranychus urticae Koch (Acari: Tetranychidae) and aphids, Myzus persicae (Sulzer) (Pterygota: Aphididae) share many host-plants, similar abiotic conditions and are world-wide distributed therefore, they often occur simultaneously in crops. However, the effects of interspecific interactions on the biology of these pests were poorly investigated. To test if they perform differently under intra- versus inter-specific interactions, host-plant acceptance, fecundity, survival, the total number of individuals and the rate of increase in the number of individuals were studied doing non-choice bioassays under laboratory conditions with leaf discs of tomato (Solanum lycopersicum L. 'Ailsa Craig'), pak choi (Brassica rapa L. var. chinensis 'Black Behi') and bean (Phaseolus vulgaris L. 'Saxa'). Alone, the pests differently accepted the host-plants. The acceptance of pak choi by spider mites was lower under interspecific interactions and higher on tomato for aphids. In general, spider mites' performance decreased when aphids were present; the fecundity, the number of individuals and the rate of increase being significantly lower on pak choi and bean. In contrast, aphids produced more offspring in the presence of spider mites, leading to a higher rate of increase in aphids individuals on tomato and pak choi. Thus, pest' responses to interspecific interactions is species-specific.}, language = {en} }