@article{MorgnerLecointreCharbonniereetal.2015, author = {Morgner, Frank and Lecointre, Alexandre and Charbonniere, Loic J. and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Detecting free hemoglobin in blood plasma and serum with luminescent terbium complexes}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp04206a}, pages = {1740 -- 1745}, year = {2015}, abstract = {Hemolysis, the rupturing of red blood cells, can result from numerous medical conditions (in vivo) or occur after collecting blood specimen or extracting plasma and serum out of whole blood (in vitro). In clinical laboratory practice, hemolysis can be a serious problem due to its potential to bias detection of various analytes or biomarkers. Here we present the first "mix-and-measure' method to assess the degree of hemolysis in biosamples using luminescence spectroscopy. Luminescent terbium complexes (LTC) were studied in the presence of free hemoglobin (Hb) as indicators for hemolysis in TRIS-buffer, and in fresh human plasma with absorption, excitation and emission measurements. Our findings indicate dynamic as well as resonance energy transfer (FRET) between the LTC and the porphyrin ligand of hemoglobin. This transfer leads to a decrease in luminescence intensity and decay time even at nanomolar hemoglobin concentrations either in buffer or plasma. Luminescent terbium complexes are very sensitive to free hemoglobin in buffer and blood plasma. Due to the instant change in luminescence properties of the LTC in presence of Hb it is possible to access the concentration of hemoglobin via spectroscopic methods without incubation time or further treatment of the sample thus enabling a rapid and sensitive detection of hemolysis in clinical diagnostics.}, language = {en} } @article{CramerGambinossiWischerhoffetal.2015, author = {Cramer, Ashley D. and Gambinossi, Filippo and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Miller, Reinhard and Ferri, James K.}, title = {Flexible thermoresponsive nanomembranes at the aqueous-air interface}, series = {Chemical communications}, volume = {51}, journal = {Chemical communications}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c4cc07359b}, pages = {877 -- 880}, year = {2015}, abstract = {A synthetic pathway is described to construct thermoresponsive freestanding nanomembranes at the aqueous-air interface of a pendant drop. Dynamic control of the reaction kinetics allows formation of viscoelastic interfaces supporting anisotropic stresses and mechanical stability, which can be tuned by external stimuli.}, language = {en} } @article{TritschlerBeckSchlaadetal.2015, author = {Tritschler, U. and Beck, F. and Schlaad, Helmut and C{\"o}lfen, Helmut}, title = {Electrochromic properties of self-organized multifunctional V2O5-polymer hybrid films}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {3}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c4tc02138j}, pages = {950 -- 954}, year = {2015}, abstract = {Bio-inspired V2O5-polymer hybrid films were prepared following a one-step self-organization procedure based on liquid crystal formation of organic and inorganic components. These materials were previously reported to exhibit advantageous mechanical properties, comparable to biomaterials, such as human bone and dentin. Here, we show that these hybrid films prepared via a fast and simple synthesis procedure have an additional function as an electrochromic material, exhibiting a long-term cycle stability under alternating potentials. The structures were found to remain intact without visible changes after more than hundred switching cycles and storing the devices for several weeks. Consequently, this multifunctional V2O5-polymer hybrid system shows great promise for various technical applications.}, language = {en} } @article{SeckerRobinsonSchlaad2015, author = {Secker, Christian and Robinson, Joshua W. and Schlaad, Helmut}, title = {Alkyne-X modification of polypeptoids}, series = {European polymer journal}, volume = {62}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2014.08.028}, pages = {394 -- 399}, year = {2015}, abstract = {Poly(N-propargyl glycine) (PNPG) can be readily prepared by ring-opening polymerization of N-propargyl glycine N-carboxyanhydride (NCA) and modified using various addition reactions such as copper catalyzed [3+2] cycloaddition of azide, radical (photo-)addition of thiol, nucleophilic addition of ethylene oxide, and thermal induced cross-linking. It is demonstrated that PNPG can serve as a modular platform to produce a bibliography of novel functional polypeptoid or pseudopeptide materials, including polypeptoid ionic liquids and graft copolymers.}, language = {en} } @article{NoechelReddyWangetal.2015, author = {N{\"o}chel, Ulrich and Reddy, Chaganti Srinivasa and Wang, Ke and Cui, Jing and Zizak, Ivo and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers}, series = {Journal of materials chemistry : A, Materials for energy and sustainability}, volume = {3}, journal = {Journal of materials chemistry : A, Materials for energy and sustainability}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/c4ta06586g}, pages = {8284 -- 8293}, year = {2015}, abstract = {Temperature-memory polymers remember the temperature, where they were deformed recently, enabled by broad thermal transitions. In this study, we explored a series of crosslinked poly[ethylene-co-(vinyl acetate)] networks (cPEVAs) comprising crystallizable polyethylene (PE) controlling units exhibiting a pronounced temperature-memory effect (TME) between 16 and 99 degrees C related to a broad melting transition (similar to 100 degrees C). The nanostructural changes in such cPEVAs during programming and activation of the TME were analyzed via in situ X-ray scattering and specific annealing experiments. Different contributions to the mechanism of memorizing high or low deformation temperatures (T-deform) were observed in cPEVA, which can be associated to the average PE crystal sizes. At high deformation temperatures (>50 degrees C), newly formed PE crystals, which are established during cooling when fixing the temporary shape, dominated the TME mechanism. In contrast, at low T-deform (<50 degrees C), corresponding to a cold drawing scenario, the deformation led preferably to a disruption of existing large crystals into smaller ones, which then fix the temporary shape upon cooling. The observed mechanism of memorizing a deformation temperature might enable the prediction of the TME behavior and the knowledge based design of other TMPs with crystallizable controlling units.}, language = {en} } @article{MondalBehrensMatthesetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Matthes, Philipp R. and Sch{\"o}nfeld, Fabian and Nitsch, J{\"o}rn and Steffen, Andreas and Primus, Philipp-Alexander and Kumke, Michael Uwe and M{\"u}ller-Buschbaum, Klaus and Holdt, Hans-J{\"u}rgen}, title = {White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {3}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {18}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c4tc02919d}, pages = {4623 -- 4631}, year = {2015}, language = {en} } @article{MatisSchoenbornSaalfrank2015, author = {Matis, Jochen Rene and Schoenborn, Jan Boyke and Saalfrank, Peter}, title = {A multi-reference study of the byproduct formation for a ring-closed dithienylethene photoswitch}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp00987a}, pages = {14088 -- 14095}, year = {2015}, abstract = {Photodriven molecular switches are sometimes hindered in their performance by forming byproducts which act as dead ends in sequences of switching cycles, leading to rapid fatigue effects. Understanding the reaction pathways to unwanted byproducts is a prerequisite for preventing them. This article presents a study of the photochemical reaction pathways for byproduct formation in the photochromic switch 1,2-bis-(3-thienyl)-ethene. Specifically, using single-and multi-reference methods the post-deexcitation reaction towards the byproduct in the electronic ground state S-0 when starting from the S-1-S-0 conical intersection (CoIn), is considered in detail. We find an unusual low-energy pathway, which offers the possibility for the formation of a dyotropic byproduct. Several high-energy pathways can be excluded with high probability.}, language = {en} } @article{MirskovaAdamovichMirskovetal.2015, author = {Mirskova, Anna N. and Adamovich, Sergey N. and Mirskov, Rudolf G. and Kolesnikova, Olga P. and Schilde, Uwe}, title = {Immunoactive ionic liquids based on 2-hydroxyethylamines and 1-R-indol-3-ylsulfanylacetic acids. Crystal and molecular structure of immunodepressant tris-(2-hydroxyethyl)ammonium indol-3-ylsulfanylacetate}, series = {Open chemistry : formerly Central European journal of chemistry}, volume = {13}, journal = {Open chemistry : formerly Central European journal of chemistry}, number = {1}, publisher = {De Gruyter Open}, address = {Warsaw}, issn = {2391-5420}, doi = {10.1515/chem-2015-0018}, pages = {149 -- 155}, year = {2015}, abstract = {Immunoactive ionic liquids (2-hydroxyethyl) ammonium 1-R-indol-3-ylsulfanyl-acetates HN+R1R2(CH2CH2OH)center dot O-(O)CCH2S-Ind-R-3-1(1-5), were synthesized by the reaction of (2-hydroxyethyl)amines with indol-3-ylsulfanylacetic- or 1-benzylindol-3-ylsulfanylacetic acid. 1: R-1 = R-2 = CH2CH2OH, R-3 = H; 2: R-1 =CH3, R-2=CH2CH2OH, R3 = H; 3: R-1 = R-2 = CH3, R-3 = H; 4: R-1 = R-2 = CH2CH2OH, R-3 = CH2C6H5; 5: R-1 = CH3; R-2 = CH2CH2OH; R-3 = CH2C6H5. The structure of each compound was elucidated by IR, NMR H-1, C-13, and N-15 techniques and their composition was confirmed by elemental analysis. The crystal structure of tris-(2-hydroxyethyl) ammonium indol-3-ylsulfanylacetate was investigated by X-ray diffraction analysis. Immunoactive properties of the title compounds were screened.}, language = {en} } @article{VacogneBrosnanMasicetal.2015, author = {Vacogne, Charlotte D. and Brosnan, Sarah M. and Masic, Admir and Schlaad, Helmut}, title = {Fibrillar gels via the self-assembly of poly(L-glutamate)-based statistical copolymers}, series = {Polymer Chemistry}, volume = {6}, journal = {Polymer Chemistry}, number = {28}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c5py00491h}, pages = {5040 -- 5052}, year = {2015}, abstract = {Polypeptides having secondary structures often undergo self-assembly which can extend over multiple length scales. Poly(gamma-benzyl-L-glutamate) (PBLG), for example, folds into a-helices and forms physical organogels, whereas poly(L-glutamic acid) (PLGA at acidic pH) or poly(L-glutamate) (PLG at neutral/basic pH) do not form hydrogels. We explored the gelation of modified PBLG and investigated the deprotection of the carboxylic acid moieties in such gels to yield unique hydrogels. This was accomplished through photo-crosslinking gelation of poly(gamma-benzyl-L-glutamate-co-allylglycine) statistical copolymers in toluene, tetrahydrofuran, and 1,4-dioxane. Unlike most polymer-based chemical gels, our gels were prepared from dilute solutions (<20 g L-1, i.e., <2\% w/v) of low molar mass polymers. Despite such low concentrations and molar masses, our dioxane gels showed high mechanical stability and little shrinkage; remarkably, they also exhibited a porous fibrillar network. Deprotection of the carboxylic acid moieties in dioxane gels yielded pH responsive and highly absorbent PLGA/PLG-based hydrogels (swelling ratio of up to 87), while preserving the network structure, which is an unprecedented feature in the context of crosslinked PLGA gels. These outstanding properties are highly attractive for biomedical materials.}, language = {en} } @article{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {27}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp03093e}, pages = {18079 -- 18086}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10(-18) cm(2) for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @article{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and Stueker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp02615f}, pages = {19656 -- 19669}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp(2)/sp(3) hybrid species with CQC double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @article{Kroener2015, author = {Kroener, Dominik}, title = {Laser-driven electron dynamics for circular dichroism in mass spectrometry: from onephoton excitations to multiphoton ionization}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp02193f}, pages = {19643 -- 19655}, year = {2015}, abstract = {The distinction of enantiomers is a key aspect of chemical analysis. In mass spectrometry the distinction of enantiomers has been achieved by ionizing the sample with circularly polarized laser pulses and comparing the ion yields for light of opposite handedness. While resonant excitation conditions are expected to be most efficient, they are not required for the detection of a circular dichroism (CD) in the ion yield. However, the prediction of the size and sign of the circular dichroism becomes challenging if non-resonant multiphoton excitations are used to ionize the sample. Employing femtosecond laser pulses to drive electron wavepacket dynamics based on ab initio calculations, we attempt to reveal underlying mechanisms that determine the CD under non-resonant excitation conditions. Simulations were done for (R)-1,2-propylene oxide, using time-dependent configuration interaction singles with perturbative doubles (TD-CIS(D)) and the aug-cc-pVTZ basis set. Interactions between the electric field and the electric dipole and quadrupole as well as between the magnetic field and the magnetic dipole were explicitly accounted for. The ion yield was determined by treating states above the ionization potential as either stationary or non-stationary with energy-dependent lifetimes based on an approved heuristic approach. The observed population dynamics do not allow for a simple interpretation, because of highly non-linear interactions. Still, the various transition pathways are governed by resonant enantiospecific n-photon excitation, with preferably high transition dipole moments, which eventually dominate the CD in the ionized population.}, language = {en} } @article{KirchheckerTroegerMuellerBakeetal.2015, author = {Kirchhecker, Sarah and Tr{\"o}ger-M{\"u}ller, Steffen and Bake, Sebastian and Antonietti, Markus and Taubert, Andreas and Esposito, Davide}, title = {Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions}, series = {Green chemistry : an international journal and green chemistry resource}, volume = {17}, journal = {Green chemistry : an international journal and green chemistry resource}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9262}, doi = {10.1039/c5gc00913h}, pages = {4151 -- 4156}, year = {2015}, abstract = {Fully renewable pyridinium ionic liquids were synthesised via the hydrothermal decarboxylation of pyridinium zwitterions derived from furfural and amino acids in flow. The functionality of the resulting ionic liquid (IL) can be tuned by choice of different amino acids as well as different natural carboxylic acids as the counter-ions. A representative member of this new class of ionic liquids was successfully used for the synthesis of ionogels and as a solvent for the Heck coupling.}, language = {en} } @article{StrauchNeumannKellingetal.2015, author = {Strauch, Peter and Neumann, Mike and Kelling, Alexandra and Schilde, Uwe}, title = {Bis(1,2-dithiosquarato)nickelates(II): Synthesis, Structure, EPR and Thermal Behavior}, series = {Acta chimica Slovenica}, volume = {62}, journal = {Acta chimica Slovenica}, number = {2}, publisher = {Drustvo}, address = {Ljubljana}, issn = {1318-0207}, pages = {288 -- 296}, year = {2015}, abstract = {1,2-Dithiosquaratonickelates are available by direct synthesis from metal salts with dipotassium-1,2-dithiosquarate and the appropriate counter cations. The synthesis and characterization, including mass spectrometry, of a series 1,2-dithiosquaratonickelates(II), [Ni(dtsq)(2)](2-), with several "onium" cations is reported and the X-ray structures of two diamagnetic complexes, (HexPh(3)P)(2)[Ni(dtsq)(2)] and (BuPh3P)(2)[Ni(dtsq)(2)] with sterically demanding counter ions are presented. The diamagnetic nickel complexes have been doped as host lattices with traces of Cu(II) to measure EPR for additional structural information. The thermal behavior of this series is studied by thermogravimetry and differential thermal analysis (TG/DTA). The thermolysis in air as well as under nitrogen atmosphere of these complexes results in nickel oxide nano-particles in all cases, which are characterized by X-ray powder diffraction.}, language = {en} } @article{KlierKumke2015, author = {Klier, Dennis Tobias and Kumke, Michael Uwe}, title = {Upconversion NaYF4:Yb:Er nanoparticles co-doped with Gd3+ and Nd3+ for thermometry on the nanoscale}, series = {RSC Advances}, volume = {5}, journal = {RSC Advances}, number = {82}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c5ra11502g}, pages = {67149 -- 67156}, year = {2015}, abstract = {In the present work, the upconversion luminescence properties of oleic acid capped NaYF4:Gd3+:Yb3+:Er3+ upconversion nanoparticles (UCNP) with pure beta crystal phase and Nd3+ ions as an additional sensitizer were studied in the temperature range of 288 K < T < 328 K. The results of this study showed that the complex interplay of different mechanisms and effects, causing the special temperature behavior of the UCNP can be developed into thermometry on the nanoscale, e.g. to be applied in biological systems on a cellular level. The performance was improved by the use of Nd3+ as an additional dopant utilizing the cascade sensitization mechanism in tri-doped UCNP.}, language = {en} } @article{HentrichJungingerBrunsetal.2015, author = {Hentrich, Doreen and Junginger, Mathias and Bruns, Michael and Boerner, Hans G. and Brandt, Jessica and Brezesinski, Gerald and Taubert, Andreas}, title = {Interface-controlled calcium phosphate mineralization: effect of oligo(aspartic acid)-rich interfaces}, series = {CrystEngComm}, volume = {17}, journal = {CrystEngComm}, number = {36}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c4ce02274b}, pages = {6901 -- 6913}, year = {2015}, abstract = {The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air-water and air-buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression-expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH.}, language = {en} } @article{VacogneSchlaad2015, author = {Vacogne, Charlotte D. and Schlaad, Helmut}, title = {Primary ammonium/tertiary amine-mediated controlled ring opening polymerisation of amino acid N-carboxyanhydrides}, series = {Chemical communications}, volume = {51}, journal = {Chemical communications}, number = {86}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c5cc06905j}, pages = {15645 -- 15648}, year = {2015}, abstract = {Stable commercial primary ammonium chlorides were combined with tertiary amines to initiate the controlled ring opening polymerisation of amino acid N-carboxyanhydrides to yield polypeptides with defined end group structure, predetermined molar mass and narrow molar mass distribution.}, language = {en} } @article{KlierKumke2015, author = {Klier, Dennis Tobias and Kumke, Michael Uwe}, title = {Analysing the effect of the crystal structure on upconversion luminescence in Yb3+, Er3+-co-doped NaYF4 nanomaterials}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {3}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {42}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c5tc02218e}, pages = {11228 -- 11238}, year = {2015}, abstract = {NaYF4:Yb:Er nanoparticles (UCNP) were synthesized under mild experimental conditions to obtain a pure cubic lattice. Upon annealing at different temperatures up to T-an = 700 degrees C phase transitions to the hexagonal phase and back to the cubic phase were induced. The UCNP materials obtained for different T-an were characterized with respect to the lattice phase using standard XRD and Raman spectroscopy as well as steady state and time resolved upconversion luminescence. The standard techniques showed that for the annealing temperature range 300 degrees C < T-an < 600 degrees C the hexagonal lattice phase was dominant. For T-an < 300 degrees C hardly any change in the lattice phase could be deduced, whereas for T-an > 600 degrees C a back transfer to the alpha-phase was observed. Complementarily, the luminescence upconversion properties of the annealed UCNP materials were characterized in steady state and time resolved luminescence measurements. Distinct differences in the upconversion luminescence intensity, the spectral intensity distribution and the luminescence decay kinetics were found for the cubic and hexagonal lattice phases, respectively, corroborating the results of the standard analytical techniques used. In laser power dependent measurements of the upconversion luminescence intensity it was found that the green (G1, G2) and red (R) emission of Er3+ showed different effects of T-an on the number of required photons reflecting the differences in the population routes of different energy levels involved. Furthermore, the intensity ratio of G(full)/R is highly effected by the laser power only when the beta-phase is present, whereas the G1/G2 intensity ratio is only slightly effected regardless of the crystal phase. Moreover, based on different upconversion luminescence kinetics characteristics of the cubic and hexagonal phase time-resolved area normalized emission spectra (TRANES) proved to be a very sensitive tool to monitor the phase transition between cubic and hexagonal phases. Based on the TRANES analysis it was possible to resolve the lattice phase transition in more detail for 200 degrees C < T-an < 300 degrees C, which was not possible with the standard techniques.}, language = {en} } @article{RochKratzMaetal.2015, author = {Roch, Toralf and Kratz, Karl and Ma, Nan and Lendlein, Andreas}, title = {Polymeric inserts differing in their chemical composition as substrates for dendritic cell cultivation}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {61}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-152004}, pages = {347 -- 357}, year = {2015}, abstract = {Dendritic cells (DC) contribute to immunity by presenting antigens to T cells and shape the immune response by the secretion of cytokines. Due to their immune stimulatory potential DC-based therapies are promising approaches to overcome tolerance e.g. against tumors. In order to enforce the immunogenicity of DCs, they have to be matured and activated in vitro, which requires an appropriate cell culture substrate, supporting their survival expansion and activation. Since most cell culture devices are not optimized for DC growth, it is hypothesized that polymers with certain physicochemical properties can positively influence the DC cultures. With the aim to evaluate the effects that polymers with different chemical compositions have on the survival, the activation status, and the cytokine/chemokine secretion profile of DC, their interaction with polystyrene (PS), polycarbonate (PC), poly(ether imide) (PEI), and poly(styrene-co-acrylonitrile) (PSAN)-based cell culture inserts was investigated. By using this insert system, which fits exactly into 24 well cell culture plates, effects induced from the culture dish material can be excluded. The viability of untreated DC after incubation with the different inserts was not influenced by the different inserts, whereas LPS-activatedDCshowed an increased survival after cultivation on PC, PS, and PSAN compared to tissue culture polystyrene (TCP). The activation status of DC estimated by the expression of CD40, CD80, CD83, CD86 and HLA-DR expression was not altered by the different inserts in untreated DC but slightly reduced when LPS-activated DC were cultivated on PC, PS, PSAN, and PEI compared to TCP. For each polymeric cell culture insert a distinct cytokine profile could be observed. Since inserts with different chemical compositions of the inserts did not substantially alter the behavior of DC all insert systems could be considered as alternative substrate. The observed increased survival on some polymers, which showed in contrast to TCP a hydrophobic surface, could be beneficial for certain applications such as T cell expansion and activation.}, language = {en} } @article{WangKratzBehletal.2015, author = {Wang, Weiwei and Kratz, Karl and Behl, Marc and Yan, Wan and Liu, Yue and Xu, Xun and Baudis, Stefan and Li, Zhengdong and Kurtz, Andreas and Lendlein, Andreas and Ma, Nan}, title = {The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {61}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-152001}, pages = {301 -- 321}, year = {2015}, abstract = {Polyether ether ketone (PEEK) as a high-performance, thermoplastic implant material entered the field of medical applications due to its structural function and commercial availability. In bone tissue engineering, the combination of mesenchymal stem cells (MSCs) with PEEK implants may accelerate the bone formation and promote the osseointegration between the implant and the adjacent bone tissue. In this concept the question how PEEK influences the behaviour and functions of MSCs is of great interest. Here the cellular response of human adipose-derived MSCs to PEEK was evaluated and compared to tissue culture plate (TCP) as the reference material. Viability and morphology of cells were not altered when cultured on the PEEK film. The cells on PEEK presented a high proliferation activity in spite of a relatively lower initial cell adhesion rate. There was no significant difference on cell apoptosis and senescence between the cells on PEEK and TCP. The inflammatory cytokines and VEGF secreted by the cells on these two surfaces were at similar levels. The cells on PEEK showed up-regulated BMP2 and down-regulated BMP4 and BMP6 gene expression, whereas no conspicuous differences were observed in the committed osteoblast markers (BGLAP, COL1A1 and Runx2). With osteoinduction the cells on PEEK and TCP exhibited a similar osteogenic differentiation potential. Our results demonstrate the biofunctionality of PEEK for human MSC cultivation and differentiation. Its clinical benefits in bone tissue engineering may be achieved by combining MSCs with PEEK implants. These data may also provide useful information for further modification of PEEK with chemical or physical methods to regulate the cellular processes of MSCs and to consequently improve the efficacy of MSC-PEEK based therapies.}, language = {en} } @article{ZuehlkeRiebeBeitzetal.2015, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Zenichowski, Karl and Diener, Marc and Linscheid, Michael W.}, title = {An electrospray ionization-ion mobility spectrometer as detector for high-performance liquid chromatography}, series = {European journal of mass spectrometry}, volume = {21}, journal = {European journal of mass spectrometry}, number = {3}, publisher = {WeltTrends}, address = {Sussex}, issn = {1469-0667}, doi = {10.1255/ejms.1367}, pages = {391 -- 402}, year = {2015}, abstract = {The application of electrospray ionization (ESI) ion mobility (IM) spectrometry on the detection end of a high-performance liquid chromatograph has been a subject of study for some time. So far, this method has been limited to low flow rates or has required splitting of the liquid flow. This work presents a novel concept of an ESI source facilitating the stable operation of the spectrometer at flow rates between 10 mu L min(-1) and 1500 mu L min(-1) without flow splitting, advancing the T-cylinder design developed by Kurnin and co-workers. Flow rates eight times faster than previously reported were achieved because of a more efficient dispersion of the liquid at increased electrospray voltages combined with nebulization by a sheath gas. Imaging revealed the spray operation to be in a rotationally symmetric multijet-mode. The novel ESI-IM spectrometer tolerates high water contents (<= 90\%) and electrolyte concentrations up to 10 mM, meeting another condition required of high-performance liquid chromatography (HPLC) detectors. Limits of detection of 50 nM for promazine in the positive mode and 1 mu M for 1,3-dinitrobenzene in the negative mode were established. Three mixtures of reduced complexity (five surfactants, four neuroleptics, and two isomers) were separated in the millisecond regime in stand-alone operation of the spectrometer. Separations of two more complex mixtures (five neuroleptics and 13 pesticides) demonstrate the application of the spectrometer as an HPLC detector. The examples illustrate the advantages of the spectrometer over the established diode array detector, in terms of additional IM separation of substances not fully separated in the retention time domain as well as identification of substances based on their characteristic IMs.}, language = {en} } @article{PapeWessigBrunner2015, author = {Pape, Simon and Wessig, Pablo and Brunner, Heiko}, title = {A new and environmentally benign synthesis of aroylguanidines using iron trichloride}, series = {RSC Advances}, volume = {5}, journal = {RSC Advances}, number = {123}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c5ra20869f}, pages = {101408 -- 101411}, year = {2015}, abstract = {A new synthetic approach for the guanylation of aroylthioureas using iron trichloride is presented. Our synthetic method distinguishes itself by benign reaction conditions, low costs and a broad product spectrum. The scope of the reaction and calorimetric studies are described.}, language = {en} } @article{MaiBoyeYuanetal.2015, author = {Mai, Tobias and Boye, Susanne and Yuan, Jiayin and Voelkel, Antje and Graewert, Marlies and G{\"u}nter, Christina and Lederer, Albena and Taubert, Andreas}, title = {Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization}, series = {RSC Advances}, volume = {5}, journal = {RSC Advances}, number = {125}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c5ra20035k}, pages = {103494 -- 103505}, year = {2015}, abstract = {The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine) s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium) ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 10(6) g mol(-1). All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal M-n = 100 000 g mol(-1)). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution.}, language = {en} } @article{HaralampievMertensSchwarzeretal.2015, author = {Haralampiev, Ivan and Mertens, Monique and Schwarzer, Roland and Herrmann, Andreas and Volkmer, Rudolf and Wessig, Pablo and Mueller, Peter}, title = {Recruitment of SH-Containing peptides to lipid and biological membranes through the use of a palmitic acid functionalized with a Maleimide Group}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201408089}, pages = {323 -- 326}, year = {2015}, abstract = {This study presents a novel and easily applicable approach to recruit sulfhydryl-containing biomolecules to membranes by using a palmitic acid which is functionalized with a maleimide group. Notably, this strategy can also be employed with preformed (biological) membranes. The applicability of the assay is demonstrated by characterizing the binding of a Rhodamine-labeled peptide to lipid and cellular membranes using methods of fluorescence spectroscopy, lifetime measurement, and microscopy. Our approach offers new possibilities for preparing biologically active liposomes and manipulating living cells.}, language = {en} } @article{SachseDawsonKahmen2015, author = {Sachse, Dirk and Dawson, Todd E. and Kahmen, Ansgar}, title = {Seasonal variation of leaf wax n-alkane production and delta H-2 values from the evergreen oak tree, Quercus agrifolia}, series = {Isotopes in environmental and health studies}, volume = {51}, journal = {Isotopes in environmental and health studies}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1025-6016}, doi = {10.1080/10256016.2015.1011636}, pages = {124 -- 142}, year = {2015}, abstract = {In order to understand the timing of leaf wax synthesis in higher plants, we analysed the variability in leaf wax n-alkane concentration, composition (expressed as average chain length (ACL)), and delta H-2(wax) values as well as plant source water delta H-2 values (xylem and leaf water) in the evergreen tree Quercus agrifolia over a period of 9 months, beginning with leaf flush. We identified three distinct periods of leaf development with the first month following leaf flush being characterized by de novo synthesis and possibly removal of n-alkanes. During the following 3 months, n-alkane concentrations increased sevenfold and delta H-2(wax) and ACL values increased, suggesting this period was the major leaf wax n-alkane formation period. During the remaining 4 months of the experiment, stable values suggest cessation of leaf wax n-alkane formation. We find that n-alkane synthesis in Q. agrifolia takes place over 4 months, substantially longer than that observed for deciduous trees.}, language = {en} } @article{OlejkoCywinskiBald2015, author = {Olejko, Lydia and Cywinski, Piotr J. and Bald, Ilko}, title = {Ion-Selective formation of a guanine quadruplex on DNA origami structures}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201409278}, pages = {673 -- 677}, year = {2015}, abstract = {DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single-molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G-quadruplex structures in the presence of monovalent cations (e.g. Na+ and K+) is currently used for the detection of K+ ions, however, with insufficient selectivity towards Na+. By means of FRET between two suitable dyes attached to the 3- and 5-ends of telomeric DNA we demonstrate that the formation of G-quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions.}, language = {en} } @article{WessigMerkelMueller2015, author = {Wessig, Pablo and Merkel, Roswitha and Mueller, Peter}, title = {Articulated rods - a novel class of molecular rods based on oligospiroketals (OSK)}, series = {Beilstein journal of organic chemistry}, volume = {11}, journal = {Beilstein journal of organic chemistry}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {1860-5397}, doi = {10.3762/bjoc.11.11}, pages = {74 -- 84}, year = {2015}, abstract = {We developed a new type of molecular rods consisting of two (or more) rigid units linked by a flexible joint. Consequently we called these constructs articulated rods (ARs). The syntheses of ARs were carried out by a flexible and modular approach providing access to a number of compounds with various functionalizations in terminal positions. First applications were presented with pyrene, cinnamoyl and anthracenyl labelled ARs.}, language = {en} } @article{CuiXiaMitzscherlingetal.2015, author = {Cui, Qianling and Xia, Bihua and Mitzscherling, Steffen and Masic, Admir and Li, Lidong and Bargheer, Matias and Moehwald, Helmuth}, title = {Preparation of gold nanostars and their study in selective catalytic reactions}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {465}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2014.10.028}, pages = {20 -- 25}, year = {2015}, abstract = {In this work, gold nanostars (AuNSs) with size around 90 nm were prepared through an easy one-step method. They show excellent catalytic activity and large surface-enhanced Raman scattering (SERS) activity at the same time. Surprisingly, they exhibited different catalytic performance on the reduction of aromatic nitro compounds with different substituents on the para position. To understand such a difference, the SERS spectra were recorded, showing that the molecular orientation of reactants on the gold surface were different. We anticipate that this research will help to understand the relationship of the molecular orientation with the catalytic activity of gold nanoparticles.}, language = {en} } @article{HahnTraegerHoldt2015, author = {Hahn, Simone and Tr{\"a}ger, Juliane and Holdt, Hans-J{\"u}rgen}, title = {Solid-Phase extraction of Pt(IV) with Dialkyl-(hexane-1,6-diyl) phosphate modified merrifield resins from aqueous chloride media in column operations}, series = {Separation and purification technology}, volume = {50}, journal = {Separation and purification technology}, number = {2}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {0149-6395}, doi = {10.1080/01496395.2014.968264}, pages = {191 -- 206}, year = {2015}, abstract = {A series of three dialkyl phosphate resins with a Merrifield resin support was used to extract platinum from acidic media. In column operations total capacities of 85-130 mg/g were gained. The presence of palladium and rhodium results in the order: Pt(IV) > Pd(II) >> Rh(III). From a leach liquor gained from spent automotive catalysts metals forming anionic chloro complexes are co-extracted only to a small extent. However, in order to separate and enrich platinum a selective back-extraction can be done with a sodium thiocyanate solution. A second elution step with acidic thiourea leads to a mixed solution of palladium and rhodium.}, language = {en} } @article{RadingSandmannSteupetal.2015, author = {Rading, M. Michael and Sandmann, Michael and Steup, Martin and Chiarugi, Davide and Valleriani, Angelo}, title = {Weak correlation of starch and volume in synchronized photosynthetic cells}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {91}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.91.012711}, pages = {11}, year = {2015}, abstract = {In cultures of unicellular algae, features of single cells, such as cellular volume and starch content, are thought to be the result of carefully balanced growth and division processes. Single-cell analyses of synchronized photoautotrophic cultures of the unicellular alga Chlamydomonas reinhardtii reveal, however, that the cellular volume and starch content are only weakly correlated. Likewise, other cell parameters, e.g., the chlorophyll content per cell, are only weakly correlated with cell size. We derive the cell size distributions at the beginning of each synchronization cycle considering growth, timing of cell division and daughter cell release, and the uneven division of cell volume. Furthermore, we investigate the link between cell volume growth and starch accumulation. This work presents evidence that, under the experimental conditions of light-dark synchronized cultures, the weak correlation between both cell features is a result of a cumulative process rather than due to asymmetric partition of biomolecules during cell division. This cumulative process necessarily limits cellular similarities within a synchronized cell population.}, language = {en} } @article{BeisebekovSerikpayevaZhumagalievaetal.2015, author = {Beisebekov, Madiar Maratovich and Serikpayeva, Saniya B. and Zhumagalieva, Shynar Nurlanovna and Beisebekov, Marat Kianovich and Abilov, Zharylkasyn Abduachitovich and Kosmella, Sabine and Koetz, Joachim}, title = {Interactions of bentonite clay in composite gels of non-ionic polymers with cationic surfactants and heavy metal ions}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {293}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-014-3463-x}, pages = {633 -- 639}, year = {2015}, abstract = {Chemically cross-linked composite gels based on bentonite clay from Manyrak deposit (Kazakhstan Republic) and nonionic polymers, i.e., poly(hydroxyethylacrylate) and poly(acrylamide), were polymerized in situ after preliminary intercalation of monomers in an aqueous suspension of bentonite clay. By means of cryo-scanning electron microscopy, it was shown that bentonite clay is well incorporated into the gel network structure with pore sizes up to 1.5 mu m. The intercalated bentonite clay can adsorb cationic surfactants as well as heavy metal ions due to electrostatic interactions. Conductometric and surface tension measurements indicate not only the adsorption of surfactants and heavy metals inside the hydrogel, but also the displacement of the critical micellization concentration (CMC) of the surfactants.}, language = {en} } @article{EhlertKroenerSaalfrank2015, author = {Ehlert, Christopher and Kr{\"o}ner, Dominik and Saalfrank, Peter}, title = {A combined quantum chemical/molecular dynamics study of X-ray photoelectron spectra of polyvinyl alcohol using oligomer models}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {199}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2014.12.007}, pages = {38 -- 45}, year = {2015}, abstract = {X-ray photoelectron spectroscopy (XPS) is a powerful tool for probing the local chemical environment of atoms near surfaces. When applied to soft matter, such as polymers, XPS spectra are frequently shifted and broadened due to thermal atom motion and by interchain interactions. We present a combined quantum mechanical QM/molecular dynamics (MD) simulation of X-ray photoelectron spectra of polyvinyl alcohol (PVA) using oligomer models in order to account for and quantify these effects on the XPS (C1s) signal. In our study, molecular dynamics at finite temperature were performed with a classical forcefield and by ab initio MD (AIMD) using the Car-Parrinello method. Snapshots along, the trajectories represent possible conformers and/or neighbouring environments, with different C1s ionization potentials for individual C atoms leading to broadened XPS peaks. The latter are determined by Delta-Kohn Sham calculations. We also examine the experimental practice of gauging XPS (C1s) signals of alkylic C-atoms in C-containing polymers to the C1s signal of polyethylene. We find that (i) the experimental XPS (C1s) spectra of PVA (position and width) can be roughly represented by single-strand models, (ii) interchain interactions lead to red-shifts of the XPS peaks by about 0.6 eV, and (iii) AIMD simulations match the findings from classical MD semi-quantitatively. Further, (iv) the gauging procedure of XPS (C1s) signals to the values of PE, introduces errors of about 0.5 eV. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{SengeDahmsHoldtetal.2015, author = {Senge, Mathias O. and Dahms, Katja and Holdt, Hans-J{\"u}rgen and Kelling, Alexandra}, title = {Porphyrin substituent regiochemistry, conformation and packing - the case of 5,10-diphenylporphyrin}, series = {Zeitschrift f{\"u}r Naturforschung : B, Chemical sciences}, volume = {70}, journal = {Zeitschrift f{\"u}r Naturforschung : B, Chemical sciences}, number = {2}, publisher = {De Gruyter}, address = {T{\"u}bingen}, issn = {0932-0776}, doi = {10.1515/znb-2014-0217}, pages = {119 -- 123}, year = {2015}, abstract = {5,10-Disubstituted porphyrins are more recent additions to the family of meso-substituted porphyrins. A crystallographic comparison of 5,10-diphenylporphyrin with the regioisomeric 5,15-disubstituted system reveals striking differences in their conformation. In the free base porphyrins the former uses mainly out-of-plane distortion to alleviate steric strain while in-plane core elongation predominates in the latter. In contrast, the structure of the Cu(II) complex is planar and forms strong p-p aggregates with very small lateral shifts. Macroscopically, the packing is similar to that of porphyrin sponges of the 5,10,15,20-tetraphenylporphyrin type.}, language = {en} } @article{GambinossiSefcikWischerhoffetal.2015, author = {Gambinossi, Filippo and Sefcik, Lauren S. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Ferri, James K.}, title = {Engineering Adhesion to Thermoresponsive Substrates: Effect of Polymer Composition on Liquid-Liquid-Solid Wetting}, series = {ACS applied materials \& interfaces}, volume = {7}, journal = {ACS applied materials \& interfaces}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/am507418m}, pages = {2518 -- 2528}, year = {2015}, abstract = {Adhesion control in liquidliquidsolid systems represents a challenge for applications ranging from self-cleaning to biocompatibility of engineered materials. By using responsive polymer chemistry and molecular self-assembly, adhesion at solid/liquid interfaces can be achieved and modulated by external stimuli. Here, we utilize thermosensitive polymeric materials based on random copolymers of di(ethylene glycol) methyl ether methacrylate (x = MEO(2)MA) and oligo(ethylene glycol) methyl ether methacrylate (y = OEGMA), that is, P(MEO(2)MA(x)-co-OEGMA(y)), to investigate the role of hydrophobicity on the phenomenon of adhesion. The copolymer ratio (x/y) dictates macromolecular changes enabling control of the hydrophilic-to-lipophilic balance (HBL) of the polymer brushes through external triggers such as ionic strength and temperature. We discuss the HBL of the thermobrushes in terms of the surface energy of the substrate by measuring the contact angle at waterdecaneP(MEO(2)MA(x)-co-OEGMA(y)) brush contact line as a function of polymer composition and temperature. Solid supported polyelectrolyte layers grafted with P(MEO(2)MA(x)-co-OEGMA(y)) display a transition in the wettability that is related to the lower critical solution temperature of the polymer brushes. Using experimental observation of the hydrophilic to hydrophobic transition by the contact angle, we extract the underlying energetics associated with liquidliquidsolid adhesion as a function of the copolymer ratio. The change in cellular attachment on P(MEO(2)MA(x)-co-OEGMA(y)) substrates of variable (x/y) composition demonstrates the subtle role of compositional tuning on the ability to control liquidliquidsolid adhesion in biological applications.}, language = {en} } @article{SchulzeUtechtHebertetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Hebert, Andreas and R{\"u}ck-Braun, Karola and Saalfrank, Peter and Tegeder, Petra}, title = {Reversible Photoswitching of the Interfacial Nonlinear Optical Response}, series = {The journal of physical chemistry letters}, volume = {6}, journal = {The journal of physical chemistry letters}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz502477m}, pages = {505 -- 509}, year = {2015}, abstract = {Incorporating photochromic molecules into organic/inorganic hybrid materials may lead to photoresponsive systems. In such systems, the second-order nonlinear properties can be controlled via external stimulation with light at an appropriate wavelength. By creating photochromic molecular switches containing self-assembled monolayers on Si(111), we can demonstrate efficient reversible switching, which is accompanied by a pronounced modulation of the nonlinear optical (NLO) response of the system. The concept of utilizing functionalized photoswitchable Si surfaces could be a way for the generation of two-dimensional NLO switching materials, which are promising for applications in photonic and optoelectronic devices.}, language = {en} } @article{TongWirthKirschetal.2015, author = {Tong, Yujin and Wirth, Jonas and Kirsch, Harald and Wolf, Martin and Saalfrank, Peter and Campen, Richard Kramer}, title = {Optically probing Al-O and O-H vibrations to characterize water adsorption and surface reconstruction on alpha-alumina: An experimental and theoretical study}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {142}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4906346}, pages = {12}, year = {2015}, abstract = {Oxide/water interfaces are ubiquitous in a wide variety of applications and the environment. Despite this ubiquity, and attendant decades of study, gaining molecular level insight into water/oxide interaction has proven challenging. In part, this challenge springs from a lack of tools to concurrently characterize changes in surface structure (i.e., water/oxide interaction from the perspective of the solid) and O-H population and local environment (i.e., water/oxide interaction from the water perspective). Here, we demonstrate the application of surface specific vibrational spectroscopy to the characterization of the interaction of the paradigmatic alpha-Al2O3(0001) surface and water. By probing both the interfacial Al-O (surface phonon) and O-H spectral response, we characterize this interaction from both perspectives. Through electronic structure calculation, we assign the interfacial Al-O response and rationalize its changes on surface dehydroxylation and reconstruction. Because our technique is all-optical and interface specific, it is equally applicable to oxide surfaces in vacuum, ambient atmospheres and at the solid/liquid interface. Application of this approach to additional alumina surfaces and other oxides thus seems likely to significantly expand our understanding of how water meets oxide surfaces and thus the wide variety of phenomena this interaction controls. (C) 2015 AIP Publishing LLC.}, language = {en} } @article{BauerHartmannKleinpeteretal.2015, author = {Bauer, Monika and Hartmann, Lutz and Kleinpeter, Erich and Kuschel, Frank and Pithart, Cornelia and Weissflog, Wolfgang}, title = {Chiral Dopants Derived from Ephedrine/Pseudoephedrine: Structure and Medium Effects on the Helical Twisting Power}, series = {Molecular crystals and liquid crystals}, volume = {608}, journal = {Molecular crystals and liquid crystals}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1542-1406}, doi = {10.1080/15421406.2014.949592}, pages = {14 -- 24}, year = {2015}, abstract = {Chiral dopants were obtained by acylation of enantiomerically pure ephedrine and pseudoephedrine with promesogenic carbonyl reagents. The products have been investigated with respect to their chiral transfer ability on nematic host matrices characterized by extreme differences of the dielectric anisotropy. It has been found that the medium dependence of the helicity induction nearly disappears at reduced temperatures. Based on variable temperature H-1 NMR studies on monoacylated homologues, the estimated coalescence temperatures and free activation enthalpies for the hindered rotation around C-N bonds could be correlated with the helical twisting power. Measurements by dielectric spectroscopy reveal the correlation between the molar mass of substituents linked to the chiral building block and the dynamic glass transition of corresponding chiral dopants. Furthermore, the effect of intramolecular and intermolecular hydrogen bonds has been studied by ATR-FTIR spectroscopy.}, language = {en} } @article{KlierKumke2015, author = {Klier, Dennis Tobias and Kumke, Michael Uwe}, title = {Upconversion Luminescence Properties of NaYF4:Yb:Er Nanoparticles Codoped with Gd3+}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {119}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp5103548}, pages = {3363 -- 3373}, year = {2015}, abstract = {The temperature-dependent upconversion luminescence of NaYF4:Yb:Er nanoparticles (UCNP) containing different contents of Gd3+ as additional dopant was characterized. The UCNP were synthesized in a hydrothermal synthesis and stabilized with citrate in order to transfer them to the water phase. Basic characterization was carried out using TEM and DLS to determine the average size of the UCNP. The XRD technique was used to investigate the crystal lattice of the UCNP. It was found that due to the presence of Gd3+, an alteration of the lattice phase from a to beta was induced which was also reflected in the observed upconversion luminescence properties of the UCNP. A detailed analysis of the upconversion luminescence spectraespecially at ultralow temperaturesrevealed the different effects of phonon coupling between the host lattice and the sensitizer (Yb3+) as well as the activator (Er3+). Furthermore, the upconversion luminescence intensity reached a maximum between 15 and 250 K depending on Gd3+ content. In comparison to the very complex temperature behavior of the upconversion luminescence in the temperature range <273 K, the luminescence intensity ratio of H-2(11/2)-> I-4(15/2) to S-4(3/2)-> I-4(15/2) (R = G1/G2) in a higher temperature range can be described by an Arrhenius-type equation.}, language = {en} } @article{LorenzSaalfrank2015, author = {Lorenz, Ulf and Saalfrank, Peter}, title = {Measures for the non-Markovianity of a harmonic oscillator coupled to a discrete bath derived from numerically exact references}, series = {The European physical journal : D, Atomic, molecular, optical and plasma physics}, volume = {69}, journal = {The European physical journal : D, Atomic, molecular, optical and plasma physics}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1434-6060}, doi = {10.1140/epjd/e2014-50727-8}, pages = {14}, year = {2015}, abstract = {System-bath problems in physics and chemistry are often described by Markovian master equations. However, the Markov approximation, i.e., neglect of bath memory effects is not always justified, and different measures of non-Markovianity have been suggested in the literature to judge the validity of this approximation. Here we calculate several computable measures of non-Markovianity for the non-trivial problem of a harmonic oscillator coupled to a large number of bath oscillators. The Multi Configurational Time Dependent Hart ree nietliod is used to provide a numerically converged solution of the system-bath Schrodinger equation, from which the appropriate quantities can be calculated. In particular, we consider measures based on trace-distances and quantum discord for a variety of initial states. These quantities have proven useful in the case of two-level and other small model systems Tpically encountered in quantum optics; but are less straightforward to interpret for the more complex model systems that are relevant for chemical physics.}, language = {en} } @article{LerouxRabuSommerdijketal.2015, author = {Leroux, Fabrice and Rabu, Pierre and Sommerdijk, Nico A. J. M. and Taubert, Andreas}, title = {Two-Dimensional Hybrid Materials: Transferring Technology from Biology to Society}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201500153}, pages = {1089 -- 1095}, year = {2015}, abstract = {Hybrid materials are at the forefront of modern research and technology; hence a large number of publications on hybrid materials has already appeared in the scientific literature. This essay focuses on the specifics and peculiarities of hybrid materials based on two-dimensional (2D) building blocks and confinements, for two reasons: (1) 2D materials have a very broad field of application, but they also illustrate many of the scientific challenges the community faces, both on a fundamental and an application level; (2) all authors of this essay are involved in research on 2D materials, but their perspective and vision of how the field will develop in the future and how it is possible to benefit from these new developments are rooted in very different scientific subfields. The current article will thus present a personal, yet quite broad, account of how hybrid materials, specifically 2D hybrid materials, will provide means to aid modern societies in fields as different as healthcare and energy.}, language = {en} } @article{BoeseBoese2015, author = {Boese, Adrian Daniel and Boese, Roland}, title = {Tetrahydrothiophene and Tetrahydrofuran, Computational and X-ray Studies in the Crystalline Phase}, series = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, volume = {15}, journal = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1528-7483}, doi = {10.1021/cg501228w}, pages = {1073 -- 1081}, year = {2015}, abstract = {Calculations at various levels of theory with different methods and respective evaluations confirm that the twist conformation (C-2) is preferred for tetrahydrothiophene (THT) in the gas phase. In the crystalline phase, achieved by a laser assisted crystallization device, THT has C-1 symmetry (slightly distorted C-2 symmetry) in the chiral space group P2(1)2(1)2(1). This is obviously a packing effect caused by the nonsymmetrical arrangement of neighboring molecules. The distortion from C-2 symmetry costs very little energy as confirmed by computational methods in the gas phase. Only one enantiomer of the chiral THT is found in the cell which requires spontaneous crystallization, which results in a racemic mixture of crystals, or a racemization occurs prior to/during nucleation or in the embryonic state. The racemization happens by a mechanism that can be described as a partial pseudo rotation within a five-membered mono-heterocycle with a C-2-C-S-C-2' transition (C-2 and C-2' are enantiomers) maintaining the heteroatom residing within the symmetry elements. While THT has the molecular symmetry of the gas phase almost also in the crystalline phase, THF has an envelope conformation (CS). This was also established by calculations at various levels of theory which agrees well with the previously experimentally found conformation by electron diffraction. However, in the X-ray crystal structure, previously determined by Luger \& Buschmann, THF has C-2 symmetry in the centrosymmetric space group C2/c with the oxygen atom situated on the crystallographic C-2 polar axis, requesting a racemic crystal for the twisted conformers of the enantiomers. No solid-state phase transitions were detected within the experimental ranges for THT and THF. Following the stabilization by molecular clustering, and ending at the crystal lattice, we stepwise increased the number of molecules by calculation of the respective monomers, dimers, trimers, and tetramers for THF and THT. The starting point was taken from the arrangements as found in the respective crystal structures. Both conformational enantiomers are equal in energy. In such cases, a crystal may contain either a racemate of conformers or one of the conformational enantiomers only. The first case is observed in THF, the latter one in THT. It is quite likely that the selection of one enantiomeric conformer of THT from an equilibrium of conformers at the early stage of nucleation (embryonic stage) is responsible for the spontaneous crystallization. In order to check if THF could form a polymorph with the molecular packing of THT and vice versa, we first calculated THF and THT in their respective crystal lattices as determined by X-ray diffraction. Exchanging the compounds in the THT and THF crystal lattices (i.e., replacing O against S and vice versa) results in significantly worse lattice energies indicating that such a polymorph is not a probable option.}, language = {en} } @article{WirthHatterDrostetal.2015, author = {Wirth, Jonas and Hatter, Nino and Drost, Robert and Umbach, Tobias R. and Barja, Sara and Zastrow, Matthias and R{\"u}ck-Braun, Karola and Pascual, Jose Ignacio and Saalfrank, Peter and Franke, Katharina J.}, title = {Diarylethene Molecules on a Ag(111) Surface: Stability and Electron-Induced Switching}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {119}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp5122036}, pages = {4874 -- 4883}, year = {2015}, abstract = {Diarylethene derivatives are photochromic molecular switches, undergoing a ring-opening/-closing reaction by illumination with light. The symmetry of the closed form is determined by the WoodWard Hoffinann rules according to which the reaction proceeds by corirotatory rotation -in that case. Here, we show by a cOrnbined approach of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations that the Open isomer of 4,4'-(4,4'-(perfluorocydopent-1-ene-1,2-diyl)bis(5-methyl-thiophent-4,2,4-dipyridine) (PDTE) retains its open form upon adsorption on a Ag(111) surface. It caribe switched into a closed form, which we identify as the digrotatOly cydization product, by controlled manipulation 'With the STM tip, Evidence of an electric-field dependent switching-process 'is interpreted on the basis of a Simple electroStatic Model, which suggests that the reaction proceedS via an "upright" intermediate state. This pathway thus strongly differs from the switching reaction in solution.}, language = {en} } @article{MegowKoerzdoerferRengeretal.2015, author = {Megow, J{\"o}rg and K{\"o}rzd{\"o}rfer, Thomas and Renger, Thomas and Sparenberg, Mino and Blumstengel, Sylke and Henneberger, Fritz and May, Volkhard}, title = {Calculating Optical Absorption Spectra of Thin Polycrystalline Organic Films: Structural Disorder and Site-Dependent van der Waals Interaction}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {119}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.5b01587}, pages = {5747 -- 5751}, year = {2015}, abstract = {We propose a new approach for calculating the change of the absorption spectrum of a molecule when moved from the gas phase to a crystalline morphology. The so-called gas-to-crystal shift Delta epsilon(m) is mainly caused by dispersion effects and depends sensitively on the molecules specific position in the nanoscopic setting. Using an extended dipole approximation, we are able to divide Delta epsilon(m)= -QW(m) in two factors, where Q depends only on the molecular species and accounts for all nonresonant electronic transitions contributing to the dispersion while W-m is a geometry factor expressing the site dependence of the shift in a given molecular structure. The ability of our approach to predict absorption spectra is demonstrated using the example of polycrystalline films of 3,4,9,10-perylenetetracarboxylic diimide (PTCDI).}, language = {en} } @article{MegowRoehrBuschetal.2015, author = {Megow, J{\"o}rg and R{\"o}hr, Merle I. S. and Busch, Marcel and Renger, Thomas and Mitric, Roland and Kirstein, Stefan and Rabe, J{\"u}rgen P. and May, Volkhard}, title = {Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp05945j}, pages = {6741 -- 6747}, year = {2015}, abstract = {The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory.}, language = {en} } @article{HassMunzkeRuizetal.2015, author = {Hass, Roland and Munzke, Dorit and Ruiz, Salome Vargas and Tippmann, Johannes and Reich, Oliver}, title = {Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy}, series = {Analytical \& bioanalytical chemistry}, volume = {407}, journal = {Analytical \& bioanalytical chemistry}, number = {10}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-015-8513-9}, pages = {2791 -- 2802}, year = {2015}, abstract = {In turbid biogenic liquid material, like blood or milk, quantitative optical analysis is often strongly hindered by multiple light scattering resulting from cells, particles, or droplets. Here, optical attenuation is caused by losses due to absorption as well as scattering of light. Fiber-based Photon Density Wave (PDW) spectroscopy is a very promising method for the precise measurement of the optical properties of such materials. They are expressed as absorption and reduced scattering coefficients (mu (a) and mu (s)', respectively) and are linked to the chemical composition and physical properties of the sample. As a process analytical technology, PDW spectroscopy can sense chemical and/or physical processes within such turbid biogenic liquids, providing new scientific insight and process understanding. Here, for the first time, several bioprocesses are analyzed by PDW spectroscopy and the resulting optical coefficients are discussed with respect to established mechanistic models of the chosen processes. As model systems, enzymatic casein coagulation in milk, temperature-induced starch hydrolysis in beer mash, and oxy- as well as deoxygenation of human donor blood were investigated by PDW spectroscopy. The findings indicate that also for very complex biomaterials (i.e., not well-defined model materials like monodisperse polymer dispersions), obtained optical coefficients allow for the assessment of a structure/process relationship and thus for a new analytical access to biogenic liquid material. This is of special relevance as PDW spectroscopy data are obtained without any dilution or calibration, as often found in conventional spectroscopic approaches.}, language = {en} } @article{BaierKellingHoldt2015, author = {Baier, Heiko and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen}, title = {PEPPSI-Effect on Suzuki-Miyaura Reactions Using 4,5-Dicyano-1,3-dimesitylimidazol-2-ylidene-Palladium Complexes: A Comparison between trans-Ligands}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201500010}, pages = {1950 -- 1957}, year = {2015}, abstract = {The PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) complexes 12-15 with the structure [PdCl2{(CN)(2)IMes}(3-R-py)] (12: R = H; 13: R = Cl; 14: R = Br; 15: R = CN) bearing the maleonitrile-based N-heterocyclic carbene (NHC) (CN)(2)IMes ({(CN)(2)IMes}: 4,5-dicyano-1,3-dimesitylimidazol-2-ylidene) were prepared. Solid state structures of 14 and 15 were obtained. Complexes 14 and 15 adopt a slightly distorted square-planar coordination geometry in the solid state with the substituted pyridine ligand trans to the NHC. Catalytic activities of precatalysts 12-15 were studied and subsequently compared to complexes [PdCl2{(CN)(2)IMes}(PPh3)] (4) and [PdCl(dmba){(CN)(2)IMes}] (5) recently reported by our group in the Suzuki-Miyaura reaction of various aryl halides and phenylboronic acid. Reactions using previously reported [PdCl2(IMes)(py)] (IMes: 1,3-dimesitylimidazol-2-ylidene) (1) were also carried out and their results contrasted to those involving 12-15, 4 and 5. Differences in initiation rates and the catalytically active species related to the seven complexes in regards to the throw away ligand were investigated. Poisoning experiments with mercury show that palladium nanoparticles are responsible for the catalytic activity.}, language = {en} } @article{KedrackiFilippovGouretal.2015, author = {Kedracki, Dawid and Filippov, Sergey K. and Gour, Nidhi and Schlaad, Helmut and Nardin, Corinne}, title = {Formation of DNA-Copolymer Fibrils Through an Amyloid-Like Nucleation Polymerization Mechanism}, series = {Macromolecular rapid communications}, volume = {36}, journal = {Macromolecular rapid communications}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201400728}, pages = {768 -- 773}, year = {2015}, abstract = {Conjugation of a hydrophobic poly(2-oxazoline) bearing tertiary amide groups along its backbone with a short single stranded nucleotide sequence results in an amphiphilic comb/graft copolymer, which organizes in fibrils upon direct dissolution in water. Supported by circular dichroism, atomic force microscopy, transmission electron microscopy, and scattering data, fibrils are formed through inter- and intramolecular hydrogen bonding between hydrogen accepting amide groups along the polymer backbone and hydrogen donating nucleic acid grafts leading to the formation of hollow tubes.}, language = {en} } @article{NeffeLendlein2015, author = {Neffe, Axel T. and Lendlein, Andreas}, title = {Going Beyond Compromises in Multifunctionality of Biomaterials}, series = {Advanced healthcare materials}, volume = {4}, journal = {Advanced healthcare materials}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2192-2640}, doi = {10.1002/adhm.201400724}, pages = {642 -- 645}, year = {2015}, language = {en} } @article{Boese2015, author = {Boese, Adrian Daniel}, title = {Density Functional Theory and Hydrogen Bonds: Are We There Yet?}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {16}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201402786}, pages = {978 -- 985}, year = {2015}, abstract = {Density functional theory (DFT) has become more successful at introducing dispersion interactions, and can be thus applied to a wide range of systems. Amongst these are systems that contain hydrogen bonds, which are extremely important for the biological regime. Here, the description of hydrogen-bonded interactions by DFT with and without dispersion corrections is investigated. For small complexes, for which electrostatics are the determining factor in the intermolecular interactions, the inclusion of dispersion with most functionals yields large errors. Only for larger systems, in which van der Waals interactions are more important, do dispersion corrections improve the performance of DFT for hydrogen-bonded systems. None of the studied functionals, including double hybrid functionals (with the exception of DSD-PBEP86 without dispersion corrections), are more accurate than MP2 for the investigated species.}, language = {en} } @article{KleinpeterMichaelisKoch2015, author = {Kleinpeter, Erich and Michaelis, Marcus and Koch, Andreas}, title = {Are para-nitro-pyridine N-oxides quinonoid or benzenoid? An answer given by spatial NICS (TSNMRS)}, series = {Tetrahedron}, volume = {71}, journal = {Tetrahedron}, number = {15}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2015.02.043}, pages = {2273 -- 2279}, year = {2015}, abstract = {The spatial magnetic properties (Through-Space NMR Shieldings-TSNMRS) of a number of substituted para-nitro-pyridine N-oxides have been computed, visualized as Iso-Chemical-Shielding-Surfaces (ICSS) of various size and direction, and were examined subject to the present quinonoid or benzenoid pi-relectron distribution of the six-membered ring. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KolocourisKochKleinpeteretal.2015, author = {Kolocouris, Antonios and Koch, Andreas and Kleinpeter, Erich and Stylianakis, Ioannis}, title = {2-Substituted and 2,2-disubstituted adamantane derivatives as models for studying substituent chemical shifts and C-H-ax center dot center dot center dot Y-ax cyclohexane contacts-results from experimental and theoretical NMR spectroscopic chemical shifts and DFT structures}, series = {Tetrahedron}, volume = {71}, journal = {Tetrahedron}, number = {16}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2015.01.044}, pages = {2463 -- 2481}, year = {2015}, abstract = {The complete H-1 and C-13 NMR chemical shifts assignment for various 2-substituted and 2,2-disubstituted adamantane derivatives 1-38 in CDCl3 solution was realized on the basis of NMR experiments combined with chemical structure information and DFT-GIAO (B3LYP/6-31+G(d,p)-GIAO) calculations of chemical shifts in solution. Substituent-induced C-13 NMR chemical shifts (SCS) are discussed. C-H-ax center dot center dot center dot Y-ax contacts are a textbook prototype of steric hindrance in organic chemistry. The nature of these contacts will be further investigated in this work on basis of new adamantane derivatives, which are substituted at C-2 to provide models for 1,4-C-H-ax center dot center dot center dot Y-ax and 1,5-C-H-ax center dot center dot center dot Y-ax contacts. The B3LYP/6-31+G(d,p) calculations predicted the presence of NBO hyperconjugative attractive interactions between C-H-ax and Y-ax groups along C-H-ax center dot center dot center dot Y-ax contacts. The H-1 NMR signal separation, Delta delta(gamma-CH2), reflects the strength of the H-bonded C-H-ax center dot center dot center dot Y-ax contact. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{EisoldSellrieSchenketal.2015, author = {Eisold, Ursula and Sellrie, Frank and Schenk, J{\"o}rg A. and Lenz, Christine and St{\"o}cklein, Walter F. M. and Kumke, Michael Uwe}, title = {Bright or dark immune complexes of anti-TAMRA antibodies for adapted fluorescence-based bioanalysis}, series = {Analytical \& bioanalytical chemistry}, volume = {407}, journal = {Analytical \& bioanalytical chemistry}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-015-8538-0}, pages = {3313 -- 3323}, year = {2015}, abstract = {Fluorescence labels, for example fluorescein or rhodamin derivatives, are widely used in bioanalysis applications including lateral-flow assays, PCR, and fluorescence microscopy. Depending on the layout of the particular application, fluorescence quenching or enhancement may be desired as the detection principle. Especially for multiplexed applications or high-brightness requirements, a tunable fluorescence probe can be beneficial. The alterations in the photophysics of rhodamine derivatives upon binding to two different anti-TAMRA antibodies were investigated by absorption and fluorescence-spectroscopy techniques, especially determining the fluorescence decay time and steady-state and time-resolved fluorescence anisotropy. Two monoclonal anti-TAMRA antibodies were generated by the hybridoma technique. Although surface-plasmon-resonance measurements clearly proved the high affinity of both antibodies towards 5-TAMRA, the observed effects on the fluorescence of rhodamine derivatives were very different. Depending on the anti-TAMRA antibody either a strong fluorescence quenching (G71-DC7) or a distinct fluorescence enhancement (G71-BE11) upon formation of the immune complex was observed. Additional rhodamine derivatives were used to gain further information on the binding interaction. The data reveal that such haptens as 5-TAMRA could generate different paratopes with equal binding affinities but different binding interactions, which provide the opportunity to adapt bioanalysis methods including immunoassays for optimized detection principles for the same hapten depending on the specific requirements.}, language = {en} } @article{AdelsbergerBivigouKoumbaMiasnikovaetal.2015, author = {Adelsberger, Joseph and Bivigou Koumba, Achille Mayelle and Miasnikova, Anna and Busch, Peter and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Polystyrene-block-poly (methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution-a SANS study of the temperature-induced switching behavior}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {293}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-015-3535-6}, pages = {1515 -- 1523}, year = {2015}, abstract = {A concentrated solution of a symmetric triblock copolymer with a thermoresponsive poly(methoxy diethylene glycol acrylate) (PMDEGA) middle block and short hydrophobic, fully deuterated polystyrene end blocks is investigated in D2O where it undergoes a lower critical solution temperature-type phase transition at ca. 36 A degrees C. Small-angle neutron scattering (SANS) in a wide temperature range (15-50 A degrees C) is used to characterize the size and inner structure of the micelles as well as the correlation between the micelles and the formation of aggregates by the micelles above the cloud point (CP). A model featuring spherical core-shell micelles, which are correlated by a hard-sphere potential or a sticky hard-sphere potential together with a Guinier form factor describing aggregates formed by the micelles above the CP, fits the SANS curves well in the entire temperature range. The thickness of the thermoresponsive micellar PMDEGA shell as well as the hard-sphere radius increase slightly already below the cloud point. Whereas the thickness of the thermoresponsive micellar shell hardly shrinks when heating through the CP and up to 50 A degrees C, the hard-sphere radius decreases within 3.5 K at the CP. The volume fraction decreases already significantly below the CP, which may be at the origin of the previously observed gel-sol transition far below the CP (Miasnikova et al., Langmuir 28: 4479-4490, 2012). Above the CP, small, and at higher temperatures, large aggregates are formed by the micelles.}, language = {en} } @article{ZhangSauterFangetal.2015, author = {Zhang, Quanchao and Sauter, Tilman and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Shape-Memory Capability of Copolyetheresterurethane Microparticles Prepared via Electrospraying}, series = {Macromolecular materials and engineering}, volume = {300}, journal = {Macromolecular materials and engineering}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.201400267}, pages = {522 -- 530}, year = {2015}, abstract = {Multifunctional thermo-responsive and degradable microparticles exhibiting a shapememory effect (SME) have attracted widespread interest in biomedicine as switchable delivery vehicles or microactuators. In this work almost spherical solid microparticles with an average diameter of 3.9 +/- 0.9 mm are prepared via electrospraying of a copolyetheresterurethane named PDC, which is composed of crystallizable oligo(p-dioxanone) (OPDO) hard and oligo(e-caprolactone) (OCL) switching segments. The PDC microparticles are programmed via compression at different pressures and their shapememory capability is explored by off-line and online heating experiments. When a low programming pressure of 0.2 MPa is applied a pronounced thermally-induced shape-memory effect is achieved with a shape recovery ratio about 80\%, while a high programming pressure of 100 MPa resulted in a weak shape-memory performance. Finally, it is demonstrated that an array of PDC microparticles deposited on a polypropylene (PP) substrate can be successfully programmed into a smart temporary film, which disintegrates upon heating to 60 degrees C.}, language = {en} } @article{SaatchiBehlNoecheletal.2015, author = {Saatchi, Mersa and Behl, Marc and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Copolymer Networks From Oligo(epsilon-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature}, series = {Macromolecular rapid communications}, volume = {36}, journal = {Macromolecular rapid communications}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201400729}, pages = {880 -- 884}, year = {2015}, abstract = {Exploiting the tremendous potential of the recently discovered reversible bidirectional shape-memory effect (rbSME) for biomedical applications requires switching temperatures in the physiological range. The recent strategy is based on the reduction of the melting temperature range (T-m) of the actuating oligo(epsilon-caprolactone) (OCL) domains in copolymer networks from OCL and n-butyl acrylate (BA), where the reversible effect can be adjusted to the human body temperature. In addition, it is investigated whether an rbSME in the temperature range close or even above T-m,T-offset (end of the melting transition) can be obtained. Two series of networks having mixtures of OCLs reveal broad T(m)s from 2 degrees C to 50 degrees C and from -10 degrees C to 37 degrees C, respectively. In cyclic, thermomechanical experiments the rbSME can be tailored to display pronounced actuation in a temperature interval between 20 degrees C and 37 degrees C. In this way, the application spectrum of the rbSME can be extended to biomedical applications.}, language = {en} } @article{SchmidtElizarovSchildeetal.2015, author = {Schmidt, Bernd and Elizarov, Nelli and Schilde, Uwe and Kelling, Alexandra}, title = {Dual Role of Acetanilides: Traceless Removal of a Directing Group through Deacetylation/Diazotation and Palladium-Catalyzed C-C-Coupling Reactions}, series = {The journal of organic chemistry}, volume = {80}, journal = {The journal of organic chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.5b00272}, pages = {4223 -- 4234}, year = {2015}, abstract = {The acetamide group enables regioselective oxidative ortho-C-H activation reactions, such as Pd-catalyzed acylation. The synthetic utility of these transformations can be significantly enhanced by using the acetamide as a quasi-leaving group in a subsequent conventional Pd-catalyzed coupling or cross-coupling reaction. The concept is illustrated herein for the synthesis of o-alkenyl- and o-arylphenones, which have potential for the synthesis of arylated aromatic heterocycles.}, language = {en} } @article{KleinpeterKriigerKoch2015, author = {Kleinpeter, Erich and Kriiger, Stefanie and Koch, Andreas}, title = {Anisotropy Effect of Three-Membered Rings in H-1 NMR Spectra: Quantification by TSNMRS and Assignment of the Stereochemistry}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {119}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.5b03078}, pages = {4268 -- 4276}, year = {2015}, abstract = {The spatial magnetic properties (through Space NAIR shieldings, TSNMRSs) of cyclopropane; of the heteroanalogous oxirane, thiirane, and aziridine; and of various substituted dis-, and tris-cyclic analogues have been computed by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSSs) of various size and direction. The TSNMRS values, thus obtained, can be employed to visualize the anisotropy (ring current) effect of I the cyclopropane ring moiety. This approach has been employed to qualify and quantify substituent influences and contributions of appropriate ring heteroatoms O, NH, and S on the anisotropy (ring current) effect of three-mernbered ring moieties, and to assign the stereochemistry of mono-, bis-, and tris cyclic structures containing cyclopropane as a structural element. Characteristic examples are included.}, language = {en} } @article{UmbreenLinker2015, author = {Umbreen, Sumaira and Linker, Torsten}, title = {Simple Synthesis of Conformationally Fixed Glycosamine Analogues by Beckmann Rearrangement at the Carbohydrate Ring}, series = {Chemistry - a European journal}, volume = {21}, journal = {Chemistry - a European journal}, number = {20}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201406546}, pages = {7340 -- 7344}, year = {2015}, abstract = {Conformationally fixed carbohydrate analogues are promising small-molecule inhibitors for hydrolases like O-GlcNAcase (OGA); however, their synthesis usually requires many steps. Herein we describe cycloadditions of dichloroketene to various glycals and subsequent Beckmann rearrangements, which offer an easy and stereoselective entry to glycosamine derivatives in good yields. The reactions are applicable for hexoses, pentoses, and disaccharides, and transformations to the corresponding imidates proceed smoothly. First biological tests reveal that such imidates indeed inhibit human OGA.}, language = {en} } @article{deMolinaIhlefeldtPrevostetal.2015, author = {de Molina, Paula Malo and Ihlefeldt, Franziska Stefanie and Prevost, Sylvain and Herfurth, Christoph and Appavou, Marie-Sousai and Laschewsky, Andr{\´e} and Gradzielski, Michael}, title = {Phase Behavior of Nonionic Microemulsions with Multi-end-capped Polymers and Its Relation to the Mesoscopic Structure}, series = {Langmuir}, volume = {31}, journal = {Langmuir}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.5b00817}, pages = {5198 -- 5209}, year = {2015}, abstract = {The polymer architecture of telechelic or associative polymers has a large impact on the bridging of self-assembled structures. This Work presents: the phase behavior, small angle neutron scattering (SANS), dynamic light scattering (DLS), and fluorescence correlation spectroscopy (FCS) of a nonionic oil-in-water (O/W) microemulsion with hydrophobically end-capped multiarm polymers With functionalities f = 2, 3, and 4. For high polymer concentrations and large average interdroplet distance relative to the end-to-end distance of the polymer, d/R-ee; the system phase separates into a dense, highly connected droplet network phase, in equilibrium with a dilute phase. The extent of the two-phase region is larger for polymers With similar length but higher f. The Interaction potential between the droplets in the presence of polymer has both a repulsive and an attractive contribution as a result of the counterbalancing effects of the exclusion by polymer chains and bridging between droplets. This study experimentally demonstrates that higher polymer functionalities induce a stronger attractive force between droplets, which is responsible for a more extended phase separation region., and correlate with lower Collective droplet diffusivities and higher amplitude of the second relaxation time in DLS. The viscosity and the droplet self-diffusion obtained from FCS, however, are dominated by the end-capped chain concentration.}, language = {en} } @article{PrimusMenskiYesteetal.2015, author = {Primus, Philipp-Alexander and Menski, Antonia and Yeste, Maria Pilar and Cauqui, Miguel Angel and Kumke, Michael Uwe}, title = {Fluorescence Line-Narrowing Spectroscopy as a Tool to Monitor Phase Transitions and Phase Separation in Efficient Nanocrystalline CexZr1-xO2:Eu3+ Catalyst Materials}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {119}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.5b01271}, pages = {10682 -- 10692}, year = {2015}, abstract = {Despite the wide range of industrial applications for ceria-zirconia mixed oxides (CexZr1-xO2), the complex correlation between their atomic structure and catalytic performance is still under debate. Catalytically interesting CexZr1-xO2 nanomaterials can form homogeneous solid solutions and, depending on the composition, show phase separation under the formation of small domains. The characterization of homogeneity and atomic structure of these materials remains a major challenge. High-resolution emission spectroscopy recorded under cryogenic conditions using Eu3+ as a structural probe in doped CeZrO2 nanoparticles offers an effective way to identify the different atomic environments of the Eu3+ dopants and, subsequently, to monitor structural parameters of the ceria-zirconia mixed oxides. It is found that, in stoichiometric CeZrO2:Eu3+, phase separation occurs at elevated temperatures beginning with the gradual formation of (pseudo)cubic crystallites in the amorphous materials at 500 degrees C and a sudden phase separation into tetragonal, zirconia-rich and cubic, ceria-rich domains over 900 degrees C. The presented technique allows us to easily monitor subtle changes even in amorphous, high surface area samples, yielding structural information not accessible by conventional techniques such as X-ray diffraction (XRD) and Raman. Moreover, in reference experiments investigating the reducibility of largely unordered Ce0.2Zr0.8O2:Eu3+, the main reduction peak in temperature-programmed reduction measurements appeared at exceptionally low temperatures below 200 degrees C, thus suggesting the outstanding potential of this oxide to activate catalytic oxidation reactions. This effect was found to be dependent on the amount of Eu3+ dopant introduced into the CeZrO2 matrix as well as to be connected to the atomic structure of the catalyst material.}, language = {en} } @article{ZouSchlaad2015, author = {Zou, Hua and Schlaad, Helmut}, title = {Thermoresponsive PNIPAM/Silica Nanoparticles by Direct Photopolymerization in Aqueous Media}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {53}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-624X}, doi = {10.1002/pola.27593}, pages = {1260 -- 1267}, year = {2015}, abstract = {This article presents a simple and facile method to fabricate thermoresponsive polymer-grafted silica particles by direct surface-initiated photopolymerization of N-isopropylacrylamide (NIPAM). This method is based on silica particles bearing thiol functionalities, which are transformed into thiyl radicals by irradiation with UV light to initiate the polymerization of NIPAM in aqueous media at room temperature. The photopolymerization of NIPAM could be applied to smaller thiol-functionalized particles (approximate to 48 nm) as well as to larger particles (approximate to 692 nm). Hollow poly(NIPAM) capsules could be formed after etching away the silica cores from the composite particles. It is possible to produce tailor-made composite particles or capsules for particular applications by extending this approach to other vinyl monomers. (c) 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015, 53, 1260-1267}, language = {en} } @article{SulyanovaShabalinZozulyaetal.2015, author = {Sulyanova, Elena A. and Shabalin, Anatoly and Zozulya, Alexey V. and Meijer, Janne-Mieke and Dzhigaev, Dmitry and Gorobtsov, Oleg and Kurta, Ruslan P. and Lazarev, Sergey and Lorenz, Ulf and Singer, Andrej and Yefanov, Oleksandr and Zaluzhnyy, Ivan and Besedin, Ilya and Sprung, Michael and Petukhov, Andrei V. and Vartanyants, Ivan A.}, title = {Structural Evolution of Colloidal Crystal Films in the Process of Melting Revealed by Bragg Peak Analysis}, series = {Langmuir}, volume = {31}, journal = {Langmuir}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la504652z}, pages = {5274 -- 5283}, year = {2015}, abstract = {In situ X-ray diffraction studies of structural evolution of colloidal crystal films formed by polystyrene spherical particles upon incremental heating are reported. The Bragg peak parameters, such as peak position, integrated intensity, and radial and azimuthal widths were analyzed as a function of temperature. A quantitative study of colloidal crystal lattice distortions and mosaic spread as a function of temperature was carried out using Williamson-Hall plots based on mosaic block model. The temperature dependence of the diameter of polystyrene particles was obtained from the analysis of Bragg peaks, and the form factor contribution extracted from the diffraction patterns. Four stages of structural evolution in a colloidal crystal upon heating were identified. Based on this analysis, a model of the heating and melting process in the colloidal crystal film is suggested.}, language = {en} } @article{MartinezMesaSaalfrank2015, author = {Martinez-Mesa, Aliezer and Saalfrank, Peter}, title = {Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {142}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {19}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4919780}, pages = {11}, year = {2015}, abstract = {Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the "curse of dimensionality" encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0(+)) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given. (C) 2015 AIP Publishing LLC.}, language = {en} } @article{FlossSaalfrank2015, author = {Floss, Gereon and Saalfrank, Peter}, title = {The Photoinduced E -> Z Isomerization of Bisazobenzenes: A Surface Hopping Molecular Dynamics Study}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {119}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {20}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.5b02933}, pages = {5026 -- 5037}, year = {2015}, abstract = {The photoinduced E -> Z isomerization of azobenzene is a prototypical example of molecular switching. On the way toward rigid molecular rods such as those for opto-mechanical applications, multiazobenzene structures have been suggested in which several switching units are linked together within the same molecule (Bleger et al., J. Phys. Chem. B 2011, 115, 9930-9940). Large differences in the switching efficiency of multiazobenzenes have been observed, depending on whether the switching units are electronically decoupled or not. In this paper we study, on a time-resolved molecular level, the E -> Z isomerization of the simplest multiazobenzene, bisazobenzene (BAB). Two isomers (ortho- and para-BAB), differing only in the connectivity of two azo groups on a shared phenyl ring will be considered.To do so, nonadiabatic semiclassical dynamics after photo-excitation of the isomers are studied by employing an "on-the-fly", fewest switches surface hopping approach. States and couplings are calculated by Configuration Interaction (CI) based on a semiempirical (AM1) Hamiltonian (Persico and co-workers, Chem. Eur. J. 2004, 10, 2327-2341). In the case of para-BAB, computed quantum yields for photoswitching are drastically reduced compared to pristine azobenzene, due to electronic coupling of both switching units. A reason for this (apart from altered absorption spectra and reduced photochromicity) is the drastically reduced lifetimes of electronically excited states which are transiently populated. In contrast for meta-connected species, electronic subsystems are largely decoupled, and computed quantum yields are slightly higher than that for pristine azobenzene because of new isomerization channels. In this case we can also distinguish between single- and double-switch events and we find a cooperative effect: The isomerization of a single azo group is facilitated if the other azo group is already in the Z-configuration.}, language = {en} } @article{CouturierSuetterlinLaschewskyetal.2015, author = {Couturier, Jean-Philippe and S{\"u}tterlin, Martin and Laschewsky, Andr{\´e} and Hettrich, Cornelia and Wischerhoff, Erik}, title = {Responsive Inverse Opal Hydrogels for the Sensing of Macromolecules}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201500674}, pages = {6641 -- 6644}, year = {2015}, abstract = {Dual responsive inverse opal hydrogels were designed as autonomous sensor systems for (bio)macromolecules, exploiting the analyte-induced modulation of the opal's structural color. The systems that are based on oligo(ethylene glycol) macromonomers additionally incorporate comonomers with various recognition units. They combine a coil-to-globule collapse transition of the LCST type with sensitivity of the transition temperature toward molecular recognition processes. This enables the specific detection of macromolecular analytes, such as glycopolymers and proteins, by simple optical methods. While the inverse opal structure assists the effective diffusion even of large analytes into the photonic crystal, the stimulus responsiveness gives rise to strong shifts of the optical Bragg peak of more than 100nm upon analyte binding at a given temperature. The systems' design provides a versatile platform for the development of easy-to-use, fast, and low-cost sensors for pathogens.}, language = {en} } @article{KlaperLinker2015, author = {Klaper, Matthias and Linker, Torsten}, title = {New Singlet Oxygen Donors Based on Naphthalenes: Synthesis, Physical Chemical Data, and Improved Stability}, series = {Chemistry - a European journal}, volume = {21}, journal = {Chemistry - a European journal}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201500146}, pages = {8569 -- 8577}, year = {2015}, abstract = {Singlet oxygen donors are of current interest for medical applications, but suffer from a short half-life leading to low singlet oxygen yields and problems with storage. We have synthesized more than 25new singlet oxygen donors based on differently substituted naphthalenes in only a few steps. The influence of functional groups on the reaction rate of the photooxygenations, thermolysis, half-life, and singlet oxygen yield has been thoroughly studied. We determined various thermodynamic data and compared them with density functional calculations. Interestingly, remarkable stabilities of functional groups during the photooxygenations and stabilizing effects for some endoperoxides during the thermolysis have been found. Furthermore, we give evidence for a partly concerted and partly stepwise thermolysis mechanism leading to singlet and triplet oxygen, respectively. Our results might be interesting for dark oxygenations and future applications in medicine.}, language = {en} } @article{SchmidtRiemer2015, author = {Schmidt, Bernd and Riemer, Martin}, title = {Synthesis of Magnaldehydes B and E and Dictyobiphenyl B by Microwave-Promoted Cross-Coupling of Boronophenols}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {17}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201500350}, pages = {3760 -- 3766}, year = {2015}, abstract = {Magnaldehydes B and E along with their 4'-methylated derivatives are naturally occurring 2,4'-biphenols that have been isolated from the Magnoliaceae. Herein, these natural products have been synthesized from a common intermediate, which was obtained by a microwave-promoted, hetero-geneously catalyzed, and protecting-group-free Suzuki-Miyaura coupling reaction in an aqueous medium. These reaction conditions were also successfully applied to a one-step synthesis of the slime mold metabolite dictyobiphenyl B.}, language = {en} } @article{FandrichBullerSchaeferetal.2015, author = {Fandrich, Artur and Buller, Jens and Sch{\"a}fer, Daniel and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Lisdat, Fred}, title = {Electrochemical characterization of a responsive macromolecular interface on gold}, series = {Physica status solidi : A, Applications and materials science}, volume = {212}, journal = {Physica status solidi : A, Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201431698}, pages = {1359 -- 1367}, year = {2015}, abstract = {This study reports on the investigation of a thermoresponsive polymer as a thin film on electrodes and the influence of coupling a peptide and an antibody to the film. The utilized polymer from the class of poly(oligoethylene glycol)-methacrylate polymers (poly(OEGMA)) with carboxy functions containing side chains was synthesized and properly characterized in aqueous solutions. The dependence of the cloud point on the pH of the surrounding media is discussed. The responsive polymer was immobilized on gold electrodes as shown by electrochemical, quartz crystal microbalance (QCM), and atomic force microscopy (AFM) techniques. The temperature dependent behavior of the polymer covalently grafted to gold substrates is investigated using cyclic voltammetry (CV) in ferro-/ferricyanide solution. Significant changes in the slope of the temperature-dependence of the voltammetric peak current and the peak separation values clearly indicate the thermally induced conformational change on the surface. Finally, a biorecognition reaction between a short FLAG peptide (N-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-C) covalently immobilized on the polymer interface and the corresponding IgG antibody was performed. The study shows that the responsiveness of the electrode is retained after peptide coupling and antibody binding, although the response is diminished.}, language = {en} } @article{AttenbergerMoussaBrietzkeetal.2015, author = {Attenberger, Bianca and Moussa, Mehdi El Sayed and Brietzke, Thomas Martin and Vreshch, Volodimir and Holdt, Hans-J{\"u}rgen and Lescop, Christophe and Scheer, Manfred}, title = {Discrete Polymetallic Arrangements of Ag-I and Cu-I Ions Based on Multiple Bridging Phosphane Ligands and pi-pi Interactions}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201500445}, pages = {2934 -- 2938}, year = {2015}, abstract = {A simple and straightforward approach to new polymetallic Ag-I and Cu-I supramolecules is presented. The reaction of N,P,N,P,N ligand 2 with Ag-I ions affords a trimetallic complex bearing a triangular Ag-3 core; metallophilic interactions are stabilized by ligands that display a multiple bridging coordination mode as 10-electron donors. Heteroleptic polymetallic Ag-I and Cu-I complexes based on ligand 2 and the 1,12-diazaperylene (dape) ligand are obtained by an alternative molecular organization of the polymetallic arrays compared to that in homoleptic complexes of ligand 2.}, language = {en} } @article{ZhongMetwalliRawolleetal.2015, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andr{\´e} and Papadakis, Christine M. and Cubitt, Robert and M{\"u}ller-Buschbaum, Peter}, title = {Rehydration of Thermoresponsive Poly(monomethoxydiethylene glycol acrylate) Films Probed in Situ by Real-Time Neutron Reflectivity}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b00645}, pages = {3604 -- 3612}, year = {2015}, abstract = {The rehydration of thermoresponsive poly(monomethoxydiethylene glycol acrylate) (PMDEGA) films exhibiting a lower critical solution temperature (LCST) type demixing phase transition in aqueous environments, induced by a decrease in temperature, is investigated in situ with real-time neutron reflectivity. Two different starting conditions (collapsed versus partially swollen chain conformation) are compared. In one experiment, the temperature is reduced from above the demixing temperature to well below the demixing temperature. In a second experiment, the starting temperature is below the demixing temperature, but within the transition regime, and reduced to the same final temperature. In both cases, the observed rehydration process can be divided into three stages: first condensation of water from the surrounding atmosphere, then absorption of water by the PMDEGA film and evaporation of excess water, and finally, rearrangement of the PMDEGA chains. The final rehydrated film is thicker and contains more absorbed water as compared with the initially swollen film at the same temperature well below the demixing temperature.}, language = {en} } @article{ShainyanKirpichenkoKleinpeteretal.2015, author = {Shainyan, Bagrat A. and Kirpichenko, Svetlana V. and Kleinpeter, Erich and Shlykov, Sergey A. and Osadchiy, Dmitriy Yu.}, title = {Molecular structure and conformational analysis of 3-methyl-3-phenyl-3-silatetrahydropyran. Gas-phase electron diffraction, low temperature NMR and quantum chemical calculations}, series = {Tetrahedron}, volume = {71}, journal = {Tetrahedron}, number = {23}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2015.03.117}, pages = {3810 -- 3818}, year = {2015}, abstract = {The molecular structure and conformational behavior of 3-methyl-3-phenyl-3-silatetrahydropyran 1 was studied by gas-phase electron diffraction (GED-MS), low temperature C-13 NMR spectroscopy (LT NMR) and theoretical calculations. The 1-Ph-eq and 1-Ph-ax conformers were located on the potential energy surface. Rotation about the Si-C-ph bond revealed the phenyl ring orthogonal to the averaged plane of the silatetrahydropyran ring for 1-Ph-eq and a twisted orientation for 1-Ph-ax. Theoretical calculations and GED analysis indicate the predominance of 1-Ph-ax in the gas phase with the ratio of conformers (GED) 1-Ph-eq:1-Ph-ax=38:62 (Delta G degrees(307)=-0.29 kcal/mol). In solution, LT NMR spectroscopy gives almost the opposite ratio Ph-eq:1-Ph-ax=68:32 (Delta G degrees(103)=0.16 kcal/mol). Simulation of solvent effects using the PCM continuum model or by calculation of the solvent-solute complexes allowed us to rationalize the experimentally observed opposite conformational predominance of the conformers of compound 1 in the gas phase and in solution. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{GorobtsovLorenzKabachniketal.2015, author = {Gorobtsov, Oleg Yu. and Lorenz, Ulf and Kabachnik, Nicolai M. and Vartanyants, Ivan A.}, title = {Theoretical study of electronic damage in single-particle imaging experiments at x-ray free-electron lasers for pulse durations from 0.1 to 10 fs}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {91}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.91.062712}, pages = {13}, year = {2015}, abstract = {X-ray free-electron lasers (XFELs) may allow us to employ the single-particle imaging (SPI) method to determine the structure of macromolecules that do not form stable crystals. Ultrashort pulses of 10 fs and less allow us to outrun complete disintegration by Coulomb explosion and minimize radiation damage due to nuclear motion, but electronic damage is still present. The major contribution to the electronic damage comes from the plasma generated in the sample that is strongly dependent on the amount of Auger ionization. Since the Auger process has a characteristic time scale on the order of femtoseconds, one may expect that its contribution will be significantly reduced for attosecond pulses. Here we study the effect of electronic damage on the SPI at pulse durations from 0.1 to 10 fs and in a large range of XFEL fluences to determine optimal conditions for imaging of biological samples. We analyzed the contribution of different electronic excitation processes and found that at fluences higher than 1013-1015 photons/mu m(2) (depending on the photon energy and pulse duration) the diffracted signal saturates and does not increase further. A significant gain in the signal is obtained by reducing the pulse duration from 10 to 1 fs. Pulses below a duration of 1 fs do not give a significant gain in the scattering signal in comparison with 1-fs pulses. We also study the limits imposed on SPI by Compton scattering.}, language = {en} } @article{MunzkeBoehmReich2015, author = {Munzke, Dorit and B{\"o}hm, Michael and Reich, Oliver}, title = {Gaseous Oxygen Detection Using Hollow-Core Fiber-Based Linear Cavity Ring-Down Spectroscopy}, series = {Journal of lightwave technology}, volume = {33}, journal = {Journal of lightwave technology}, number = {12}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {0733-8724}, doi = {10.1109/JLT.2015.2397177}, pages = {2524 -- 2529}, year = {2015}, abstract = {We demonstrate a method for the calibration-free and quantitative analysis of small volumes of gaseous samples. A 10 m hollow-core photonic bandgap fiber is used as the sample cell (volume = 0.44 mu L) and is placed inside a linear resonator setup. The application of cavity ring-down spectroscopy and in consideration of rather small coupling losses, this leads to an increased effective optical path length of up to 70 m. This implies a volume per optical interaction path length of 6.3 nL.m(-1). We used tunable diode laser spectroscopy at 760 nm and scanned the absorption for oxygen sensing. The optical loss due to sample absorption is obtained by measuring the ring-down time of light propagating inside the cavity. The resultant absorption coefficient shows a discrepancy of only 5.1\% comparing to the HITRAN database. This approach is applicable for sensitive measurements if only submicroliter sample volumes are available.}, language = {en} } @article{ChandranDoldBuvignieretal.2015, author = {Chandran, Sivasurender and Dold, Stefanie and Buvignier, Amaury and Krannig, Kai-Steffen and Schlaad, Helmut and Reiter, G{\"u}nter and Reiter, Renate}, title = {Tuning Morphologies of Langmuir Polymer Films Through Controlled Relaxations of Non-Equilibrium States}, series = {Langmuir}, volume = {31}, journal = {Langmuir}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.5b01212}, pages = {6426 -- 6435}, year = {2015}, abstract = {Langmuir polymers films (LPFs) frequently form non-equilibrium states which are manifested in a decay of the surface pressure with time when the system is allowed to relax. Monitoring and manipulating the temporal evolution of these relaxations experimentally helps to shed light on the associated molecular reorganization processes. We present a systematic study based on different compression protocols and show how these reorganization processes impact the morphology of LPFs of poly(gamma-benzyl-L-glutamate) (PBLG); visualized by means of atomic force microscopy. Upon continuous compression, a fibrillar morphology was formed with a surface decorated by squeezed-out islands. By contrast, stepwise compression promoted the formation of a fibrillar network with a bimodal distribution of fibril diameters, caused by merging of fibrils. Finally, isobaric compression induced in-plane compaction of the monolayer. We correlate these morphological observations with the kinetics of the corresponding relaxations, described best by a sum of two exponential functions with different time scales representing two molecular processes. We discuss the observed kinetics and the resulting morphologies in the context of nucleation and growth, characteristic for first-order phase transitions. Our results demonstrate that the preparation conditions of LPFs have tremendous impact on ordering of the molecules and hence various macroscopic properties of such films.}, language = {en} } @article{PlehnZiemannMegowetal.2015, author = {Plehn, Thomas and Ziemann, Dirk and Megow, J{\"o}rg and May, Volkhard}, title = {Frenkel to Wannier-Mott Exciton Transition: Calculation of FRET Rates for a Tubular Dye Aggregate Coupled to a CdSe Nanocrystal}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {119}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp5111696}, pages = {7467 -- 7472}, year = {2015}, abstract = {The coupling is investigated of Frenkel-like exciton states formed in a tubular dye aggregate (TDA) to Wannier-Mott-like excitations of a semiconductor nanocrystal (NC). A double well TDA of the cyanine dye C8S3 with a length of 63.4 nm and a diameter of 14.7 nm is considered. The TDA interacts with a spherical Cd819Te630 NC of 4.5 nm diameter. Electronic excitations of the latter are described in a tight-binding model of the electrons and holes combined with a configuration interaction scheme to consider their mutual Coulomb coupling. To achieve a proper description of TDA excitons, a recently determined structure has been used, the energy transfer coupling has been defined as a screened interaction of atomic centered transition charges, and the site energies of the dye molecules have been the subject of a polarization correction. Even if both nanoparticles are in direct contact, the energy transfer coupling between the exciton levels of the TDA and of the NC stays below 1 meV. It results in FRET-type energy transfer with rates somewhat larger than 10(9)/s. They coincide rather well with recent preliminary experiments.}, language = {en} } @article{KlaussKoenigHille2015, author = {Klauß, Andr{\´e} and Koenig, Marcelle and Hille, Carsten}, title = {Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {6}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0130717}, pages = {27}, year = {2015}, abstract = {By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as "easy-STED", achieving lateral resolution = 0.95 whereas Bohart-Adams and Wolborska model were less suitable. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{KovachKosmellaPrietzeletal.2015, author = {Kovach, Ildyko and Kosmella, Sabine and Prietzel, Claudia Christina and Bagdahn, Christian and Koetz, Joachim}, title = {Nano-porous calcium phosphate balls}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {132}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2015.05.021}, pages = {246 -- 252}, year = {2015}, abstract = {By dropping a NaH2PO4 center dot H2O precursor solution to a CaCl2 solution at 90 degrees C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin chitosan water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600 degrees C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair. (c) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{PazBecerraSilvaetal.2015, author = {Paz, Cristian and Becerra, Jose and Silva, Mario and Burgos, Viviana and Heydenreich, Matthias and Schmidt, Bernd and Thu Tran, and Vetter, Irina}, title = {(-)-Pentylsedinine, a New Alkaloid from the Leaves of Lobelia tupa with Agonist Activity at Nicotinic Acetylcholine Receptor}, series = {Natural product communications : an international journal for communications and reviews}, volume = {10}, journal = {Natural product communications : an international journal for communications and reviews}, number = {8}, publisher = {NPC}, address = {Westerville}, issn = {1934-578X}, pages = {1355 -- 1357}, year = {2015}, abstract = {Lobelia tupa, also called devil's tobacco, is a native plant from the center-south of Chile which has been used by the native people of Chile as a hallucinogenic and anesthetic plant. A new piperidine alkaloid, called pentylsedinine, which comprises five carbons in the side chain, was isolated from the aerial part of L. tupa, along with lobeline and lobelanidine. The structure was established on the basis of 1D and 2D NMR spectroscopy. While lobeline is a neutral antagonist at alpha 3 beta 2/alpha 3 beta 4 nAChR and alpha 7 nAChR, both lobelanidine and pentylsedinine act as partial agonists at nAChR}, language = {en} } @article{SchwarzeRiemerEidneretal.2015, author = {Schwarze, Thomas and Riemer, Janine and Eidner, Sascha and Holdt, Hans-J{\"u}rgen}, title = {A Highly K+-Selective Two-Photon Fluorescent Probe}, series = {Chemistry - a European journal}, volume = {21}, journal = {Chemistry - a European journal}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201501473}, pages = {11306 -- 11310}, year = {2015}, abstract = {A highly K+-selective two-photon fluorescent probe for the in vitro monitoring of physiological K+ levels in the range of 1-100 mM is reported. The two-photon excited fluorescence (TPEF) probe shows a fluorescence enhancement (FE) by a factor of about three in the presence of 160 mM K+, independently of one-photon (OP, 430 nm) or two-photon (TP, 860 nm) excitation and comparable K+-induced FEs in the presence of competitive Na+ ions. The estimated dissociation constant (K-d) values in Na+-free solutions (K-d(OP)=(28 +/- 5) mM and K-d(TP)=(36 +/- 6) mM) and in combined K+/Na+ solutions (K-d(OP)=(38 +/- 8) mM and K-d(TP)=(46 +/- 25) mM) reflecting the high K+/Na+ selectivity of the fluorescent probe. The TP absorption cross-section (sigma(2PA)) of the TPEF probe+160 mMK(+) is 26 GM at 860 nm. Therefore, the TPEF probe is a suitable tool for the in vitro determination of K+.}, language = {en} } @article{CywinskiOlejkoLoehmannsroeben2015, author = {Cywinski, Piotr J. and Olejko, Lydia and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements}, series = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, volume = {887}, journal = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-2670}, doi = {10.1016/j.aca.2015.06.045}, pages = {209 -- 215}, year = {2015}, abstract = {L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Forster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10 -500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA). (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{BrosnanSchlaadAntonietti2015, author = {Brosnan, Sarah M. and Schlaad, Helmut and Antonietti, Markus}, title = {Aqueous Self-Assembly of Purely Hydrophilic Block Copolymers into Giant Vesicles}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {33}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201502100}, pages = {9715 -- 9718}, year = {2015}, abstract = {Self-assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self-assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500nm) and microsized (>5m) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics.}, language = {en} } @article{KoshkinaLangThiermannetal.2015, author = {Koshkina, Olga and Lang, Thomas and Thiermann, Raphael and Docter, Dominic and Stauber, Roland H. and Secker, Christian and Schlaad, Helmut and Weidner, Steffen and Mohr, Benjamin and Maskos, Michael and Bertin, Annabelle}, title = {Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum}, series = {Langmuir}, volume = {31}, journal = {Langmuir}, number = {32}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.5b00537}, pages = {8873 -- 8881}, year = {2015}, abstract = {The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 mu m. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanopartides and proteins and the accumulation of nanoparticles in a targeted body region.}, language = {en} } @article{KleinpeterKoch2015, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Characterization and quantification of quasi-aromaticity by spatial magnetic properties (TSNMRS)}, series = {Tetrahedron}, volume = {71}, journal = {Tetrahedron}, number = {33}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2015.06.019}, pages = {5275 -- 5284}, year = {2015}, abstract = {The spatial magnetic properties (Through Space NMR Shieldings-TSNMRS) of various types of structures with suggested quasi-aromaticity (a summaring topic: in detail push pull, captodative, chelate, supramolecular aromaticity, etc.) have been computed, are visualized as Isochemical Shielding Surfaces (ICSS) of various size/direction and examined subject to identify and quantify present (partial) aromaticity. While the TSNMRS approach proves really helpful [even in cases of (4n+2) pi-electron cyclic moieties formed via non-covalent polar interactions] quasi-aromaticity suggested for enol forms of 1,3-dicarbonyl compounds via resonance-assisted intramolecular and intermolecular hydrogen bonding cannot be confirmed. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{PoghosyanArsenyanAntonyanetal.2015, author = {Poghosyan, Armen H. and Arsenyan, Levon H. and Antonyan, Lilit A. and Shahinyan, Aram A. and Koetz, Joachim}, title = {Molecular dynamics simulations of branched polyethyleneimine in water-in-heptanol micelles stabilized by zwitterionic surfactants}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {479}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2015.03.053}, pages = {18 -- 24}, year = {2015}, abstract = {We have performed a 50 ns molecular dynamics simulation of a hyperbranched polymer, i.e. polyethyleneimine (PEI), inside inverse micelles formed with zwitterionic surfactants 3-(N, N-dimethyldodecylammoniio)-propansulfonate (SB) in heptanol. The runs were performed using the GROMACS simulation package. During simulation time the PEI molecule undergoes a conformational deformation and compaction. The radius of gyration of the PEI molecule finally located in the center of the water droplet is decreased from 3 nm to 1.7 nm. The unusual shrinking of the PEI molecule inside the micelle explains the extraordinary template effect of these microemulsions by making cadmium sulfide or gold clusters. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{KroenerGaebel2015, author = {Kr{\"o}ner, Dominik and Gaebel, Tina}, title = {Circular Dichroism in Mass Spectrometry: Quantum Chemical Investigations for the Differences between (R)-3-Methylcyclopentanone and Its Cation}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {119}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {34}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.5b05247}, pages = {9167 -- 9177}, year = {2015}, abstract = {In mass spectrometry enantiomers can be distinguished by multiphoton ionization employing circular polarized laser pulses. The circular dichroism (CD) is detected from the normalized difference in the ion yield after excitation with light of opposite handedness. While there are cases in which fragment and parent ions exhibit the same sign of the CD in the ion yield, several experiments show that they might also differ in sign and magnitude. Supported by experimental observations it has been proposed that the parent ion, once it has been formed, is further excited by the laser, which may result in a change of the CD in the ion yield of the formed fragments compared to the parent ion. To gain a deeper insight in possible excitation pathways we calculated and compared the electronic CD absorption spectra of neutral and cationic (R)-3-methylcyclopentanone, applying density functional theory. In addition, electron wavepacket dynamics were used to compare the CD of one- and two-photon transitions. Our results support the proposed subsequent excitation of the parent ion as a possible origin of the difference of the CD in the ion yield between parent ion and fragments.}, language = {en} } @article{SchabBalcerzakFlakusJarczykJedrykaetal.2015, author = {Schab-Balcerzak, Ewa and Flakus, Henryk and Jarczyk-Jedryka, Anna and Konieczkowska, Jolanta and Siwy, Mariola and Bijak, Katarzyna and Sobolewska, Anna and Stumpe, Joachim}, title = {Photochromic supramolecular azopolyimides based on hydrogen bonds}, series = {Optical materials : an international journal on the physics and chemistry of optical materials and their applications, including devices}, volume = {47}, journal = {Optical materials : an international journal on the physics and chemistry of optical materials and their applications, including devices}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-3467}, doi = {10.1016/j.optmat.2015.06.029}, pages = {501 -- 511}, year = {2015}, abstract = {The approach of deriving new photoresponsive active supramolecular azopolymers based on the hydrogen bonds is described. Polymers with imide rings, i.e., poly(esterimide)s and poly(etherimide)s, with phenolic hydroxyl or carboxylic groups were applied as matrixes for the polymer dye supramolecular systems. Supramolecular films were built on the basis of the hydrogen bonds between the functional groups of the polymers and various azochromophores, that is, 4-phenylazophenol, 4-[4-(6-hydroxyhexy loxy)phenylazo]benzene, 4[4-(6-hexadecaneoxy)phenylazo]pyridine and 4-(4-hydroxyphenylazo)-pyridine. The hydrogen bonding interaction in azo-systems were studied by Fourier transform infrared spectroscopy and for selected assembles by H-1 NMR technique. The obtained polyimide azo-assembles were characterized by X-ray diffraction and DSC measurements. H-bonds allow attaching a chromophore to each repeating unit of the polymer, thereby suppressing the macroscopic phase separation except for the systems based on 4-[4-(6-hydroxyhexyloxy)phenylazo]benzene. H-bonds systems were amorphous and revealed glass transition temperatures lower than for the polyimide matrixes (170-260 degrees C). The photoresponsive behavior of the azo-assemblies was tasted in holographic recording experiment. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchmidtElizarovRiemeretal.2015, author = {Schmidt, Bernd and Elizarov, Nelli and Riemer, Nastja and H{\"o}lter, Frank}, title = {Acetamidoarenediazonium Salts: Opportunities for Multiple Arene Functionalization}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {26}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201500795}, pages = {5826 -- 5841}, year = {2015}, abstract = {Unlike their ortho counterparts, meta- and para-acetamidoanilines can be converted into the corresponding acetamidoarenediazonium salts. These offer various opportunities for multiple Pd-catalyzed arene functionalization reactions, such as Matsuda-Heck-, Suzuki-Miyaura- or Fujiwara-Moritani couplings.}, language = {en} } @article{MondalBehrensKellingetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Kelling, Alexandra and Nabein, Hans-Peter and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Two Cd-II/Co-II-Imidazolate Coordination Polymers: Syntheses, Crystal Structures, Stabilities, and Luminescent/Magnetic Properties}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {641}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500526}, pages = {1991 -- 1997}, year = {2015}, abstract = {Cadmium(II) based 2D coordination polymer [Cd(L1)(2)(DMF)(2)] (1) (L1 = 4,5-dicyano-2-methylimidazolate, DMF = N,N'-dimethylformamide) and 2D cobalt(II)-imidazolate framework [Co(L3)(4)] (2) (L3 = 4,5-diamide-2-ethoxyimidazolate) were synthesized under solvothermal reaction conditions. The materials were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction measurement (PXRD) and single-crystal X-ray diffraction. Compound 1 has hexacoordinate Cd-II ions and forms a zigzag chain-like coordination polymer structure, whereas compound 2 exhibits a 2D square grid type structure. The thermal stability analysis reveals that 2 showed an exceptional thermal stability up to 360 degrees C. Also, 2 maintained its fully crystalline integrity in boiling water as confirmed by PXRD. The solid state luminescent property of 1 was not observed at room temperature. Compound 2 showed an independent high spin central Co-II atom.}, language = {en} } @article{NazirMeilingCywinskietal.2015, author = {Nazir, Rashid and Meiling, Till Thomas and Cywinski, Piotr J. and Gryko, Daniel T.}, title = {Synthesis and Optical Properties of alpha,beta-Unsaturated Ketones Bearing a Benzofuran Moiety}, series = {Asian journal of organic chemistry : an ACES journal}, volume = {4}, journal = {Asian journal of organic chemistry : an ACES journal}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2193-5807}, doi = {10.1002/ajoc.201500242}, pages = {929 -- 935}, year = {2015}, abstract = {Five pi-expanded alpha,beta-unsaturated ketones have been prepared from a strongly electron-rich benzofuran derivative via Knoevenagel reaction and aldol condensation. The incorporation of two 6-didodecylaminobenzofuran-2-yl groups at the periphery of D-pi-A and D-pi-A-pi-D molecules resulted in dyes with excellent solubility in the majority of organic solvents. In contrast to the majority of alpha,beta-unsaturated ketones, these dyes emit relatively strongly in the red region with a fluorescence quantum yield up to 40\%. They also display strong solvatofluorochromism with emission shifting from 570 nm in toluene to 670 nm in CHCl3. Depending on the chemical structure, they two-photon cross-sections (sigma(2)) are up to 1700 GM (1 GM=10(50) cm(4)s photon(-1)).}, language = {en} } @article{ZerballLaschewskyvonKlitzing2015, author = {Zerball, Maximilian and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Swelling of Polyelectrolyte Multilayers: The Relation Between, Surface and Bulk Characteristics}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {119}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.5b04350}, pages = {11879 -- 11886}, year = {2015}, abstract = {The odd even effect, i.e., the influence of the outermost layer of polyelectrolyte multilayers (PEMs) on their swelling behavior, is investigated. For that purpose poly(styrene sodium sulfonate) (PSS)/poly(diallyl-dimethylammonium chloride) (PDADMAC) polyelectrolyte multilayers are studied in air with 1\% relative humidity (RH), 30\% RH, 95\% RH, and in liquid water by ellipsometry, atomic force microscopy (AFM), and X-ray reflectometry (XRR). Since the total amount of water uptake in swollen PEMs is divided into two fractions, the void water and the swelling water, a correct evaluation of the odd even effect is only possible if both fractions are examined separately. In order to allow measuring samples over a larger thickness regime the investigation of a larger amount of samples is required. Therefore, the concept of separating void water from swelling water using neutron reflectometry is for the first time transferred to ellipsometry. The subsequent analysis of swelling water, void water, and roughness revealed the existence of two types of odd even effects: an odd even effect which addresses only the surface of the PEM (surface-odd even effect) and an odd even effect which addresses also the bulk of the PEM (bulk-odd even effect). The appearance of both effects is dependent on the environment; the surface-odd even effect is only detectable in humid air while the bulk-odd even effect is only detectable in liquid water. The bulk-odd even effect is related to the osmotic pressure between the PEM and the surrounding water. A correlation between the amount of void water and both odd even effects is not found. The amount of void water is independent of the terminated layer and the thickness of PEMs.}, language = {en} } @article{WeclawskiMeilingLeniaketal.2015, author = {Weclawski, Marek K. and Meiling, Till Thomas and Leniak, Arkadiusz and Cywinski, Piotr J. and Gryko, Daniel T.}, title = {Planar, Fluorescent Push-Pull System That Comprises Benzofuran and Iminocoumarin Moieties}, series = {Organic letters}, volume = {17}, journal = {Organic letters}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {1523-7060}, doi = {10.1021/acs.orglett.5b02042}, pages = {4252 -- 4255}, year = {2015}, abstract = {Previously unknown, vertically linked heterocycles comprised of benzofuran and iminocoumarin moieties have been synthesized directly from 1,5-dibenzoyloxyanthraquinone and arylacetonitriles via double Knoevenagel condensation followed by formal HCN elimination. The structural assembly of fully conjugated, electron-rich benzofuran and electron-deficient iminocoumarin is responsible for the strongly polarized nature of these heterocycles which translates into their polarity-sensitive fluorescence.}, language = {en} } @article{SchmittWinterBertinettietal.2015, author = {Schmitt, Clemens Nikolaus Zeno and Winter, Alette and Bertinetti, Luca and Masic, Admir and Strauch, Peter and Harrington, Matthew J.}, title = {Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation}, series = {Interface : journal of the Royal Society}, volume = {12}, journal = {Interface : journal of the Royal Society}, number = {110}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2015.0466}, pages = {8}, year = {2015}, abstract = {Protein metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85\% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82\% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat.}, language = {en} } @article{FedericoPiercePilusoetal.2015, author = {Federico, Stefania and Pierce, Benjamin F. and Piluso, Susanna and Wischke, Christian and Lendlein, Andreas and Neffe, Axel T.}, title = {Design of Decorin-Based Peptides That Bind to CollagenI and their Potential as Adhesion Moieties in Biomaterials}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {37}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201505227}, pages = {10980 -- 10984}, year = {2015}, abstract = {Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagenI, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine.}, language = {en} } @article{PesterSchmidtRuppeletal.2015, author = {Pester, Christian W. and Schmidt, Kristin and Ruppel, Markus and Schoberth, Heiko G. and B{\"o}ker, Alexander}, title = {Electric-Field-Induced Order-Order Transition from Hexagonally Perforated Lamellae to Lamellae}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b01336}, pages = {6206 -- 6213}, year = {2015}, abstract = {Block copolymers form a variety of microphase morphologies due to their ability to phase separate. The hexagonally perforated lamellar (HPL) morphology represents an unusually long-lived, nonequilibrium transient structure between lamellar and cylindrical phases. We present a detailed study of a concentrated, HPL-forming poly(styrene-b-isoprene) diblock copolymer solution in toluene in the presence of an electric field. We will show that this phase is readily aligned by a moderate electric field and provide experimental evidence for an electric-field-induced order order transition toward the lamellar phase under sufficiently strong fields. This process is shown to be fully reversible as lamellar perforations reconnect immediately upon secession of the external stimulus, recovering highly aligned perforated lamellae.}, language = {en} }