@article{SchneebergerTaborsky2020, author = {Schneeberger, Karin and Taborsky, Michael}, title = {The role of sensory ecology and cognition in social decisions}, series = {Functional ecology : an official journal of the British Ecological Society}, volume = {34}, journal = {Functional ecology : an official journal of the British Ecological Society}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0269-8463}, doi = {10.1111/1365-2435.13488}, pages = {302 -- 309}, year = {2020}, abstract = {1. We generally assume that animals should maximize information acquisition about their environment to make prudent decisions. But this is a naive assumption, as gaining information typically involves costs.
2. This is especially so in the social context, where interests between interacting partners usually diverge. The arms race involved in mutual assessment is characterized by the attempt to obtain revealing information from a partner while providing only as much information by oneself as is conducive to one's own intentions.
3. If obtaining information occasions costs in terms of time, energy and risk, animals should be selected to base their decisions on a cost-benefit ratio that takes account of the trade-off between the risk of making wrong choices and the costs involved in information acquisition, processing and use.
4. In addition, there may be physiological and/or environmental constraints limiting the ability to obtaining, processing and utilizing reliable information.
5. Here, we discuss recent empirical evidence for the proposition that social decisions are to an important extent based on the costs that result from acquiring, processing, evaluating and storing information. Using examples from different taxa and ecological contexts, we aim at drawing attention to the often neglected costs of information recipience, with emphasis on the potential role of sensory ecology and cognition in social decisions.}, language = {en} } @article{CleggWackerSpijkerman2021, author = {Clegg, Mark R. and Wacker, Alexander and Spijkerman, Elly}, title = {Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates}, series = {Frontiers in plant science : FPLS}, journal = {Frontiers in plant science : FPLS}, number = {12}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2021.707541}, year = {2021}, abstract = {Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics.}, language = {en} }