@phdthesis{Petersen2021, author = {Petersen, Gesa Maria}, title = {Source studies of small earthquakes in the AlpArray: CMT inversion, seismo-tectonic analysis and methodological developments}, doi = {10.25932/publishup-52563}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525635}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2021}, abstract = {Centroid moment tensor inversion can provide insight into ongoing tectonic processes and active faults. In the Alpine mountains (central Europe), challenges result from low signal-to-noise ratios of earthquakes with small to moderate magnitudes and complex wave propagation effects through the heterogeneous crustal structure of the mountain belt. In this thesis, I make use of the temporary installation of the dense AlpArray seismic network (AASN) to establish a work flow to study seismic source processes and enhance the knowledge of the Alpine seismicity. The cumulative thesis comprises four publications on the topics of large seismic networks, seismic source processes in the Alps, their link to tectonics and stress field, and the inclusion of small magnitude earthquakes into studies of active faults. Dealing with hundreds of stations of the dense AASN requires the automated assessment of data and metadata quality. I developed the open source toolbox AutoStatsQ to perform an automated data quality control. Its first application to the AlpArray seismic network has revealed significant errors of amplitude gains and sensor orientations. A second application of the orientation test to the Turkish KOERI network, based on Rayleigh wave polarization, further illustrated the potential in comparison to a P wave polarization method. Taking advantage of the gain and orientation results of the AASN, I tested different inversion settings and input data types to approach the specific challenges of centroid moment tensor (CMT) inversions in the Alps. A comparative study was carried out to define the best fitting procedures. The application to 4 years of seismicity in the Alps (2016-2019) substantially enhanced the amount of moment tensor solutions in the region. We provide a list of moment tensors solutions down to magnitude Mw 3.1. Spatial patterns of typical focal mechanisms were analyzed in the seismotectonic context, by comparing them to long-term seismicity, historical earthquakes and observations of strain rates. Additionally, we use our MT solutions to investigate stress regimes and orientations along the Alpine chain. Finally, I addressed the challenge of including smaller magnitude events into the study of active faults and source processes. The open-source toolbox Clusty was developed for the clustering of earthquakes based on waveforms recorded across a network of seismic stations. The similarity of waveforms reflects both, the location and the similarity of source mechanisms. Therefore the clustering bears the opportunity to identify earthquakes of similar faulting styles, even when centroid moment tensor inversion is not possible due to low signal-to-noise ratios of surface waves or oversimplified velocity models. The toolbox is described through an application to the Zakynthos 2018 aftershock sequence and I subsequently discuss its potential application to weak earthquakes (Mw<3.1) in the Alps.}, language = {en} } @misc{Daempfling2021, type = {Master Thesis}, author = {D{\"a}mpfling, Helge Leoard Carl}, title = {DeepGeoMap}, doi = {10.25932/publishup-52057}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-520575}, school = {Universit{\"a}t Potsdam}, pages = {ii, 81}, year = {2021}, abstract = {In recent years, deep learning improved the way remote sensing data is processed. The classification of hyperspectral data is no exception. 2D or 3D convolutional neural networks have outperformed classical algorithms on hyperspectral image classification in many cases. However, geological hyperspectral image classification includes several challenges, often including spatially more complex objects than found in other disciplines of hyperspectral imaging that have more spatially similar objects (e.g., as in industrial applications, aerial urban- or farming land cover types). In geological hyperspectral image classification, classical algorithms that focus on the spectral domain still often show higher accuracy, more sensible results, or flexibility due to spatial information independence. In the framework of this thesis, inspired by classical machine learning algorithms that focus on the spectral domain like the binary feature fitting- (BFF) and the EnGeoMap algorithm, the author of this thesis proposes, develops, tests, and discusses a novel, spectrally focused, spatial information independent, deep multi-layer convolutional neural network, named 'DeepGeoMap', for hyperspectral geological data classification. More specifically, the architecture of DeepGeoMap uses a sequential series of different 1D convolutional neural networks layers and fully connected dense layers and utilizes rectified linear unit and softmax activation, 1D max and 1D global average pooling layers, additional dropout to prevent overfitting, and a categorical cross-entropy loss function with Adam gradient descent optimization. DeepGeoMap was realized using Python 3.7 and the machine and deep learning interface TensorFlow with graphical processing unit (GPU) acceleration. This 1D spectrally focused architecture allows DeepGeoMap models to be trained with hyperspectral laboratory image data of geochemically validated samples (e.g., ground truth samples for aerial or mine face images) and then use this laboratory trained model to classify other or larger scenes, similar to classical algorithms that use a spectral library of validated samples for image classification. The classification capabilities of DeepGeoMap have been tested using two geological hyperspectral image data sets. Both are geochemically validated hyperspectral data sets one based on iron ore and the other based on copper ore samples. The copper ore laboratory data set was used to train a DeepGeoMap model for the classification and analysis of a larger mine face scene within the Republic of Cyprus, where the samples originated from. Additionally, a benchmark satellite-based dataset, the Indian Pines data set, was used for training and testing. The classification accuracy of DeepGeoMap was compared to classical algorithms and other convolutional neural networks. It was shown that DeepGeoMap could achieve higher accuracies and outperform these classical algorithms and other neural networks in the geological hyperspectral image classification test cases. The spectral focus of DeepGeoMap was found to be the most considerable advantage compared to spectral-spatial classifiers like 2D or 3D neural networks. This enables DeepGeoMap models to train data independently of different spatial entities, shapes, and/or resolutions.}, language = {en} } @phdthesis{Runge2021, author = {Runge, Alexandra}, title = {Multispectral time series analyses with Landsat and Sentinel-2 to assess permafrost disturbances in North Siberia}, doi = {10.25932/publishup-52206}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522062}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 134}, year = {2021}, abstract = {Permafrost is warming globally, which leads to widespread permafrost thaw and impacts the surrounding landscapes, ecosystems and infrastructure. Especially ice-rich permafrost is vulnerable to rapid and abrupt thaw, resulting from the melting of excess ground ice. Local remote sensing studies have detected increasing rates of abrupt permafrost disturbances, such as thermokarst lake change and drainage, coastal erosion and RTS in the last two decades. All of which indicate an acceleration of permafrost degradation. In particular retrogressive thaw slumps (RTS) are abrupt disturbances that expand by up to several meters each year and impact local and regional topographic gradients, hydrological pathways, sediment and nutrient mobilisation into aquatic systems, and increased permafrost carbon mobilisation. The feedback between abrupt permafrost thaw and the carbon cycle is a crucial component of the Earth system and a relevant driver in global climate models. However, an assessment of RTS at high temporal resolution to determine the dynamic thaw processes and identify the main thaw drivers as well as a continental-scale assessment across diverse permafrost regions are still lacking. In northern high latitudes optical remote sensing is restricted by environmental factors and frequent cloud coverage. This decreases image availability and thus constrains the application of automated algorithms for time series disturbance detection for large-scale abrupt permafrost disturbances at high temporal resolution. Since models and observations suggest that abrupt permafrost disturbances will intensify, we require disturbance products at continental-scale, which allow for meaningful integration into Earth system models. The main aim of this dissertation therefore, is to enhance our knowledge on the spatial extent and temporal dynamics of abrupt permafrost disturbances in a large-scale assessment. To address this, three research objectives were posed: 1. Assess the comparability and compatibility of Landsat-8 and Sentinel-2 data for a combined use in multi-spectral analysis in northern high latitudes. 2. Adapt an image mosaicking method for Landsat and Sentinel-2 data to create combined mosaics of high quality as input for high temporal disturbance assessments in northern high latitudes. 3. Automatically map retrogressive thaw slumps on the landscape-scale and assess their high temporal thaw dynamics. We assessed the comparability of Landsat-8 and Sentinel-2 imagery by spectral comparison of corresponding bands. Based on overlapping same-day acquisitions of Landsat-8 and Sentinel-2 we derived spectral bandpass adjustment coefficients for North Siberia to adjust Sentinel-2 reflectance values to resemble Landsat-8 and harmonise the two data sets. Furthermore, we adapted a workflow to combine Landsat and Sentinel-2 images to create homogeneous and gap-free annual mosaics. We determined the number of images and cloud-free pixels, the spatial coverage and the quality of the mosaic with spectral comparisons to demonstrate the relevance of the Landsat+Sentinel-2 mosaics. Lastly, we adapted the automatic disturbance detection algorithm LandTrendr for large-scale RTS identification and mapping at high temporal resolution. For this, we modified the temporal segmentation algorithm for annual gradual and abrupt disturbance detection to incorporate the annual Landsat+Sentinel-2 mosaics. We further parametrised the temporal segmentation and spectral filtering for optimised RTS detection, conducted further spatial masking and filtering, and implemented a binary object classification algorithm with machine-learning to derive RTS from the LandTrendr disturbance output. We applied the algorithm to North Siberia, covering an area of 8.1 x 106 km2. The spectral band comparison between same-day Landsat-8 and Sentinel-2 acquisitions already showed an overall good fit between both satellite products. However, applying the acquired spectral bandpass coefficients for adjustment of Sentinel-2 reflectance values, resulted in a near-perfect alignment between the same-day images. It can therefore be concluded that the spectral band adjustment succeeds in adjusting Sentinel-2 spectral values to those of Landsat-8 in North Siberia. The number of available cloud-free images increased steadily between 1999 and 2019, especially intensified after 2016 with the addition of Sentinel-2 images. This signifies a highly improved input database for the mosaicking workflow. In a comparison of annual mosaics, the Landsat+Sentinel-2 mosaics always fully covered the study areas, while Landsat-only mosaics contained data-gaps for the same years. The spectral comparison of input images and Landsat+Sentinel-2 mosaic showed a high correlation between the input images and the mosaic bands, testifying mosaicking results of high quality. Our results show that especially the mosaic coverage for northern, coastal areas was substantially improved with the Landsat+Sentinel-2 mosaics. By combining data from both Landsat and Sentinel-2 sensors we reliably created input mosaics at high spatial resolution for comprehensive time series analyses. This research presents the first automatically derived assessment of RTS distribution and temporal dynamics at continental-scale. In total, we identified 50,895 RTS, primarily located in ice-rich permafrost regions, as well as a steady increase in RTS-affected areas between 2001 and 2019 across North Siberia. From 2016 onward the RTS area increased more abruptly, indicating heightened thaw slump dynamics in this period. Overall, the RTS-affected area increased by 331 \% within the observation period. Contrary to this, five focus sites show spatiotemporal variability in their annual RTS dynamics, alternating between periods of increased and decreased RTS development. This suggests a close relationship to varying thaw drivers. The majority of identified RTS was active from 2000 onward and only a small proportion initiated during the assessment period. This highlights that the increase in RTS-affected area was mainly caused by enlarging existing RTS and not by newly initiated RTS. Overall, this research showed the advantages of combining Landsat and Sentinel-2 data in northern high latitudes and the improvements in spatial and temporal coverage of combined annual mosaics. The mosaics build the database for automated disturbance detection to reliably map RTS and other abrupt permafrost disturbances at continental-scale. The assessment at high temporal resolution further testifies the increasing impact of abrupt permafrost disturbances and likewise emphasises the spatio-temporal variability of thaw dynamics across landscapes. Obtaining such consistent disturbance products is necessary to parametrise regional and global climate change models, for enabling an improved representation of the permafrost thaw feedback.}, language = {en} } @misc{RamezaniZiaraniBookhagenSchmidtetal.2021, author = {Ramezani Ziarani, Maryam and Bookhagen, Bodo and Schmidt, Torsten and Wickert, Jens and de la Torre, Alejandro and Deng, Zhiguo and Calori, Andrea}, title = {A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1172}, issn = {1866-8372}, doi = {10.25932/publishup-52325}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523256}, pages = {21}, year = {2021}, abstract = {Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF's (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes.}, language = {en} } @article{RamezaniZiaraniBookhagenSchmidtetal.2021, author = {Ramezani Ziarani, Maryam and Bookhagen, Bodo and Schmidt, Torsten and Wickert, Jens and de la Torre, Alejandro and Deng, Zhiguo and Calori, Andrea}, title = {A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs13183788}, pages = {19}, year = {2021}, abstract = {Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF's (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes.}, language = {en} } @misc{RottlerBronstertBuergeretal.2021, author = {Rottler, Erwin and Bronstert, Axel and B{\"u}rger, Gerd and Rakovec, Oldrich}, title = {Projected changes in Rhine River flood seasonality under global warming}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-52296}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522962}, pages = {21}, year = {2021}, abstract = {Climatic change alters the frequency and intensity of natural hazards. In order to assess potential future changes in flood seasonality in the Rhine River Basin, we analyse changes in streamflow, snowmelt, precipitation, and evapotranspiration at 1.5, 2.0 and 3.0 ◦C global warming levels. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios (five general circulation models under three representative concentration pathways) is used to simulate the present and future climate conditions of both, pluvial and nival hydrological regimes. Our results indicate that the interplay between changes in snowmelt- and rainfall-driven runoff is crucial to understand changes in streamflow maxima in the Rhine River. Climate projections suggest that future changes in flood characteristics in the entire Rhine River are controlled by both, more intense precipitation events and diminishing snow packs. The nature of this interplay defines the type of change in runoff peaks. On the sub-basin level (the Moselle River), more intense rainfall during winter is mostly counterbalanced by reduced snowmelt contribution to the streamflow. In the High Rhine (gauge at Basel), the strongest increases in streamflow maxima show up during winter, when strong increases in liquid precipitation intensity encounter almost unchanged snowmelt-driven runoff. The analysis of snowmelt events suggests that at no point in time during the snowmelt season, a warming climate results in an increase in the risk of snowmelt-driven flooding. We do not find indications of a transient merging of pluvial and nival floods due to climate warming.}, language = {en} } @misc{FischerKorupVehetal.2021, author = {Fischer, Melanie and Korup, Oliver and Veh, Georg and Walz, Ariane}, title = {Controls of outbursts of moraine-dammed lakes in the greater Himalayan region}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-52205}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522050}, pages = {21}, year = {2021}, abstract = {Glacial lakes in the Hindu Kush-Karakoram-Himalayas-Nyainqentanglha (HKKHN) region have grown rapidly in number and area in past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating regional susceptibility of glacial lakes has largely relied on qualitative assessments by experts, thus motivating a more systematic and quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent warming, an objective and regionally consistent assessment is urgently needed. We use an inventory of 3390 moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We implement these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to GLOFs. We find that mostly larger lakes have been more prone to GLOFs in the past four decades regardless of the elevation band in which they occurred. We also find that including the regional average glacier-mass balance improves the model classification. In contrast, changes in lake area and monsoonality play ambiguous roles. Our study provides first quantitative evidence that GLOF susceptibility in the HKKHN scales with lake area, though less so with its dynamics. Our probabilistic prognoses offer improvement compared to a random classification based on average GLOF frequency. Yet they also reveal some major uncertainties that have remained largely unquantified previously and that challenge the applicability of single models. Ensembles of multiple models could be a viable alternative for more accurately classifying the susceptibility of moraine-dammed lakes to GLOFs.}, language = {en} } @phdthesis{Stuff2021, author = {Stuff, Maria}, title = {Iron isotope fractionation in carbonatite melt systems}, doi = {10.25932/publishup-51992}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519928}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 137}, year = {2021}, abstract = {Carbonatite magmatism is a highly efficient transport mechanism from Earth's mantle to the crust, thus providing insights into the chemistry and dynamics of the Earth's mantle. One evolving and promising tool for tracing magma interaction are stable iron isotopes, particularly because iron isotope fractionation is controlled by oxidation state and bonding environment. Meanwhile, a large data set on iron isotope fractionation in igneous rocks exists comprising bulk rock compositions and fractionation between mineral groups. Iron isotope data from natural carbonatite rocks are extremely light and of remarkably high variability. This resembles iron isotope data from mantle xenoliths, which are characterized by a variability in δ56Fe spanning three times the range found in basalts, and by the extremely light values of some whole rock samples, reaching δ56Fe as low as -0.69 per mille in a spinel lherzolite. Cause to this large range of variations may be metasomatic processes, involving metasomatic agents like volatile bearing high-alkaline silicate melts or carbonate melts. The expected effects of metasomatism on iron isotope fractionation vary with parameters like melt/rock-ratio, reaction time, and the nature of metasomatic agents and mineral reactions involved. An alternative or additional way to enrich light isotopes in the mantle could be multiple phases of melt extraction. To interpret the existing data sets more knowledge on iron isotope fractionation factors is needed. To investigate the behavior of iron isotopes in the carbonatite systems, kinetic and equilibration experiments in natro-carbonatite systems between immiscible silicate and carbonate melts were performed in an internally heated gas pressure vessel at intrinsic redox conditions at temperatures between 900 and 1200 °C and pressures of 0.5 and 0.7 GPa. The iron isotope compositions of coexisting silicate melt and carbonate melt were analyzed by solution MC-ICP-MS. The kinetic experiments employing a Fe-58 spiked starting material show that isotopic equilibrium is obtained after 48 hours. The experimental studies of equilibrium iron isotope fractionation between immiscible silicate and carbonate melts have shown that light isotopes are enriched in the carbonatite melt. The highest Δ56Fesil.m.-carb.melt (mean) of 0.13 per mille was determined in a system with a strongly peralkaline silicate melt composition (ASI ≥ 0.21, Na/Al ≤ 2.7). In three systems with extremely peralkaline silicate melt compositions (ASI between 0.11 and 0.14) iron isotope fractionation could analytically not be resolved. The lowest Δ56Fesil.m.-carb.melt (mean) of 0.02 per mille was determined in a system with an extremely peralkaline silicate melt composition (ASI ≤ 0.11 , Na/Al ≥ 6.1). The observed iron isotope fractionation is most likely governed by the redox conditions of the system. Yet, in the systems, where no fractionation occurred, structural changes induced by compositional changes possibly overrule the influence of redox conditions. This interpretation implicates, that the iron isotope system holds the potential to be useful not only for exploring redox conditions in magmatic systems, but also for discovering structural changes in a melt. In situ iron isotope analyses by femtosecond laser ablation coupled to MC-ICP-MS on magnetite and olivine grains were performed to reveal variations in iron isotope composition on the micro scale. The investigated sample is a melilitite bomb from the Salt Lake Crater group at Honolulu (Oahu, Hawaii), showing strong evidence for interaction with a carbonatite melt. While magnetite grains are rather homogeneous in their iron isotope compositions, olivine grains span a far larger range in iron isotope ratios. The variability of δ56Fe in magnetite is limited from - 0.17 per mille (± 0.11 per mille, 2SE) to +0.08 per mille (± 0.09 per mille, 2SE). δ56Fe in olivine range from -0.66 per mille (± 0.11 per mille, 2SE) to +0.10 per mille (± 0.13 per mille, 2SE). Olivine and magnetite grains hold different informations regarding kinetic and equilibrium fractionation due to their different Fe diffusion coefficients. The observations made in the experiments and in the in situ iron isotope analyses suggest that the extremely light iron isotope signatures found in carbonatites are generated by several steps of isotope fractionation during carbonatite genesis. These may involve equilibrium and kinetic fractionation. Since iron isotopic signatures in natural systems are generated by a combination of multiple factors (pressure, temperature, redox conditions, phase composition and structure, time scale), multi tracer approaches are needed to explain signatures found in natural rocks.}, language = {en} } @phdthesis{RuizMonroy2021, author = {Ruiz-Monroy, Ricardo}, title = {Organic geochemical characterization of the Yacoraite Formation (NW-Argentina)-paleoenvironment and petroleum potential}, doi = {10.25932/publishup-51869}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518697}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 161}, year = {2021}, abstract = {This dissertation was carried out as part of the international and interdisciplinary graduate school StRATEGy. This group has set itself the goal of investigating geological processes that take place on different temporal and spatial scales and have shaped the southern central Andes. This study focuses on claystones and carbonates of the Yacoraite Fm. that were deposited between Maastricht and Dan in the Cretaceous Salta Rift Basin. The former rift basin is located in northwest Argentina and is divided into the sub-basins Tres Cruces, Met{\´a}n-Aleman{\´i}a and Lomas de Olmedo. The overall motivation for this study was to gain new knowledge about the evolution of marine and lacustrine conditions during the Yacoraite Fm. Deposit in the Tres Cruces and Met{\´a}n-Aleman{\´i}a sub-basins. Other important aspects that were examined within the scope of this dissertation are the conversion of organic matter from Yacoraite Fm. into oil and its genetic relationship to selected oils produced and natural oil spills. The results of my study show that the Yacoraite Fm. began to be deposited under marine conditions and that a lacustrine environment developed by the end of the deposition in the Tres Cruces and Met{\´a}n-Aleman{\´i}a Basins. In general, the kerogen of Yacoraite Fm. consists mainly of the kerogen types II, III and II / III mixtures. Kerogen type III is mainly found in samples from the Yacoraite Fm., whose TOC values are low. Due to the adsorption of hydrocarbons on the mineral surfaces (mineral matrix effect), the content of type III kerogen with Rock-Eval pyrolysis in these samples could be overestimated. Investigations using organic petrography show that the organic particles of Yacoraite Fm. mainly consist of alginites and some vitrinite-like particles. The pyrolysis GC of the rock samples showed that the Yacoraite Fm. generates low-sulfur oils with a predominantly low-wax, paraffinic-naphthenic-aromatic composition and paraffinic wax-rich oils. Small proportions of paraffinic, low-wax oils and a gas condensate-generating facies are also predicted. Here, too, mineral matrix effects were taken into account, which can lead to a quantitative overestimation of the gas-forming character. The results of an additional 1D tank modeling carried out show that the beginning (10\% TR) of the oil genesis took place between ≈10 Ma and ≈4 Ma. Most of the oil (from ≈50\% to 65\%) was generated prior to the development of structural traps formed during the Plio-Pleistocene Diaguita deformation phase. Only ≈10\% of the total oil generated was formed and potentially trapped after the formation of structural traps. Important factors in the risk assessment of this petroleum system, which can determine the small amounts of generated and migrated oil, are the generally low TOC contents and the variable thickness of the Yacoraite Fm. Additional risks are associated with a low density of information about potentially existing reservoir structures and the quality of the overburden.}, language = {en} } @article{IzgiEiblDonneretal.2021, author = {Izgi, Gizem and Eibl, Eva P. S. and Donner, Stefanie and Bernauer, Felix}, title = {Performance test of the rotational sensor blueSeis-3A in a huddle test in F{\"u}rstenfeldbruck}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21093170}, pages = {20}, year = {2021}, abstract = {Rotational motions play a key role in measuring seismic wavefield properties. Using newly developed portable rotational instruments, it is now possible to directly measure rotational motions in a broad frequency range. Here, we investigated the instrumental self-noise and data quality in a huddle test in F{\"u}rstenfeldbruck, Germany, in August 2019. We compare the data from six rotational and three translational sensors. We studied the recorded signals using correlation, coherence analysis, and probabilistic power spectral densities. We sorted the coherent noise into five groups with respect to the similarities in frequency content and shape of the signals. These coherent noises were most likely caused by electrical devices, the dehumidifier system in the building, humans, and natural sources such as wind. We calculated self-noise levels through probabilistic power spectral densities and by applying the Sleeman method, a three-sensor method. Our results from both methods indicate that self-noise levels are stable between 0.5 and 40 Hz. Furthermore, we recorded the 29 August 2019 ML 3.4 Dettingen earthquake. The calculated source directions are found to be realistic for all sensors in comparison to the real back azimuth. We conclude that the five tested blueSeis-3A rotational sensors, when compared with respect to coherent noise, self-noise, and source direction, provide reliable and consistent results. Hence, field experiments with single rotational sensors can be undertaken.}, language = {en} } @misc{IzgiEiblDonneretal.2021, author = {Izgi, Gizem and Eibl, Eva P. S. and Donner, Stefanie and Bernauer, Felix}, title = {Performance Test of the Rotational Sensor blueSeis-3A in a Huddle Test in F{\"u}rstenfeldbruck}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1150}, issn = {1866-8372}, doi = {10.25932/publishup-51855}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518556}, pages = {22}, year = {2021}, abstract = {Rotational motions play a key role in measuring seismic wavefield properties. Using newly developed portable rotational instruments, it is now possible to directly measure rotational motions in a broad frequency range. Here, we investigated the instrumental self-noise and data quality in a huddle test in F{\"u}rstenfeldbruck, Germany, in August 2019. We compare the data from six rotational and three translational sensors. We studied the recorded signals using correlation, coherence analysis, and probabilistic power spectral densities. We sorted the coherent noise into five groups with respect to the similarities in frequency content and shape of the signals. These coherent noises were most likely caused by electrical devices, the dehumidifier system in the building, humans, and natural sources such as wind. We calculated self-noise levels through probabilistic power spectral densities and by applying the Sleeman method, a three-sensor method. Our results from both methods indicate that self-noise levels are stable between 0.5 and 40 Hz. Furthermore, we recorded the 29 August 2019 ML 3.4 Dettingen earthquake. The calculated source directions are found to be realistic for all sensors in comparison to the real back azimuth. We conclude that the five tested blueSeis-3A rotational sensors, when compared with respect to coherent noise, self-noise, and source direction, provide reliable and consistent results. Hence, field experiments with single rotational sensors can be undertaken.}, language = {en} } @phdthesis{Spooner2021, author = {Spooner, Cameron}, title = {How does lithospheric configuration relate to deformation in the Alpine region?}, doi = {10.25932/publishup-51644}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516442}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 138}, year = {2021}, abstract = {Forming as a result of the collision between the Adriatic and European plates, the Alpine orogen exhibits significant lithospheric heterogeneity due to the long history of interplay between these plates, other continental and oceanic blocks in the region, and inherited features from preceeding orogenies. This implies that the thermal and rheological configuration of the lithosphere also varies significantly throughout the region. Lithology and temperature/pressure conditions exert a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone, which can be regarded as the lower bound to the seismogenic zone. Therefore, they influence the spatial distribution of seismicity within a lithospheric plate. In light of this, accurately constrained geophysical models of the heterogeneous Alpine lithospheric configuration, are crucial in describing regional deformation patterns. However, despite the amount of research focussing on the area, different hypotheses still exist regarding the present-day lithospheric state and how it might relate to the present-day seismicity distribution. This dissertaion seeks to constrain the Alpine lithospheric configuration through a fully 3D integrated modelling workflow, that utilises multiple geophysical techniques and integrates from all available data sources. The aim is therefore to shed light on how lithospheric heterogeneity may play a role in influencing the heterogeneous patterns of seismicity distribution observed within the region. This was accomplished through the generation of: (i) 3D seismically constrained, structural and density models of the lithosphere, that were adjusted to match the observed gravity field; (ii) 3D models of the lithospheric steady state thermal field, that were adjusted to match observed wellbore temperatures; and (iii) 3D rheological models of long term lithospheric strength, with the results of each step used as input for the following steps. Results indicate that the highest strength within the crust (~ 1 GPa) and upper mantle (> 2 GPa), are shown to occur at temperatures characteristic for specific phase transitions (more felsic crust: 200 - 400 °C; more mafic crust and upper lithospheric mantle: ~600 °C) with almost all seismicity occurring in these regions. However, inherited lithospheric heterogeneity was found to significantly influence this, with seismicity in the thinner and more mafic Adriatic crust (~22.5 km, 2800 kg m-3, 1.30E-06 W m-3) occuring to higher temperatures (~600 °C) than in the thicker and more felsic European crust (~27.5 km, 2750 kg m-3, 1.3-2.6E-06 W m-3, ~450 °C). Correlation between seismicity in the orogen forelands and lithospheric strength, also show different trends, reflecting their different tectonic settings. As such, events in the plate boundary setting of the southern foreland correlate with the integrated lithospheric strength, occurring mainly in the weaker lithosphere surrounding the strong Adriatic indenter. Events in the intraplate setting of the northern foreland, instead correlate with crustal strength, mainly occurring in the weaker and warmer crust beneath the Upper Rhine Graben. Therefore, not only do the findings presented in this work represent a state of the art understanding of the lithospheric configuration beneath the Alps and their forelands, but also a significant improvement on the features known to significantly influence the occurrence of seismicity within the region. This highlights the importance of considering lithospheric state in regards to explaining observed patterns of deformation.}, language = {en} } @misc{SamprognaMohorThiekenKorup2021, author = {Samprogna Mohor, Guilherme and Thieken, Annegret and Korup, Oliver}, title = {Residential flood loss estimated from Bayesian multilevel models}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51774}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517743}, pages = {1599 -- 1614}, year = {2021}, abstract = {Models for the predictions of monetary losses from floods mainly blend data deemed to represent a single flood type and region. Moreover, these approaches largely ignore indicators of preparedness and how predictors may vary between regions and events, challenging the transferability of flood loss models. We use a flood loss database of 1812 German flood-affected households to explore how Bayesian multilevel models can estimate normalised flood damage stratified by event, region, or flood process type. Multilevel models acknowledge natural groups in the data and allow each group to learn from others. We obtain posterior estimates that differ between flood types, with credibly varying influences of water depth, contamination, duration, implementation of property-level precautionary measures, insurance, and previous flood experience; these influences overlap across most events or regions, however. We infer that the underlying damaging processes of distinct flood types deserve further attention. Each reported flood loss and affected region involved mixed flood types, likely explaining the uncertainty in the coefficients. Our results emphasise the need to consider flood types as an important step towards applying flood loss models elsewhere. We argue that failing to do so may unduly generalise the model and systematically bias loss estimations from empirical data.}, language = {en} } @article{SamprognaMohorThiekenKorup2021, author = {Samprogna Mohor, Guilherme and Thieken, Annegret and Korup, Oliver}, title = {Residential flood loss estimated from Bayesian multilevel models}, series = {Natural Hazards and Earth System Sciences}, volume = {21}, journal = {Natural Hazards and Earth System Sciences}, publisher = {European Geophysical Society}, address = {Katlenburg-Lindau}, issn = {2195-9269}, doi = {10.5194/nhess-21-1599-2021}, pages = {1599 -- 1614}, year = {2021}, abstract = {Models for the predictions of monetary losses from floods mainly blend data deemed to represent a single flood type and region. Moreover, these approaches largely ignore indicators of preparedness and how predictors may vary between regions and events, challenging the transferability of flood loss models. We use a flood loss database of 1812 German flood-affected households to explore how Bayesian multilevel models can estimate normalised flood damage stratified by event, region, or flood process type. Multilevel models acknowledge natural groups in the data and allow each group to learn from others. We obtain posterior estimates that differ between flood types, with credibly varying influences of water depth, contamination, duration, implementation of property-level precautionary measures, insurance, and previous flood experience; these influences overlap across most events or regions, however. We infer that the underlying damaging processes of distinct flood types deserve further attention. Each reported flood loss and affected region involved mixed flood types, likely explaining the uncertainty in the coefficients. Our results emphasise the need to consider flood types as an important step towards applying flood loss models elsewhere. We argue that failing to do so may unduly generalise the model and systematically bias loss estimations from empirical data.}, language = {en} } @phdthesis{Krstulovic2021, author = {Krstulovic, Marija}, title = {Local structure of network formers and network modifiers in silicate melts at high pressure and temperature conditions}, doi = {10.25932/publishup-51641}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516415}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2021}, abstract = {Silikatische Schmelzen sind wichtiger Bestandteil des Erdinneren und als solche leisten sie in magmatischen Prozessen einen wesentlichen Beitrag in der Dynamik der festen Erde und der chemischen Entwicklung des gesamten Erdk{\"o}pers. Makroskopische physikalische und chemische Eigenschaften wie Dichte, Kompressibilit{\"a}t, Viskosit{\"a}t, Polymerisationsgrad etc. sind durch die atomare Struktur der Schmelzen bestimmt. In Abh{\"a}ngigkeit vom Druck, aber auch von der Temperatur und der chemischen Zusammensetzung zeigen silikatische Schmelzen unterschiedliche strukturelle Eigenschaften. Diese Eigenschaften sind am besten durch die lokale Koordinationsumgebung, d.h. Symmetrie und Anzahl der Nachbarn (Koordinationszahl) eines Atoms, sowie dem Abstand zwischen Zentralatom und Nachbarn (atomarer Abstand) beschrieben. Mit steigendem Druck und Temperatur, das heißt mit der zunehmenden Tiefe in der Erde, nimmt die Dichte der Schmelzen zu, welches zur Ver{\"a}nderung von Koordinationszahl und Abst{\"a}nden f{\"u}hren kann. Bei gleichbleibender Koordinationszahl nimmt der Abstand in der Regel zu. Kommt es zu Erh{\"o}hung der Koordinationszahl kann der Abstand zunehmen. Diese allgemeinen Trends k{\"o}nnen allerdings stark variieren, welches insbesondere auf die chemische Zusammensetzung zur{\"u}ckzuf{\"u}hren ist. Dadurch, dass nat{\"u}rliche Schmelzen der tiefen Erde f{\"u}r direkte Untersuchungen nicht zug{\"a}nglich sind, um ihre Eigenschaften unter den relevanten Bedingungen zu verstehen, wurden umfangreiche experimentelle und theoretische Untersuchungen bisher durchgef{\"u}hrt. Dies wurde h{\"a}ufig am Beispiel von amorphen Proben der Endglieder SiO2, und GeO2 studiert, wobei letzteres als strukturelles und chemisches Analogmodell zu SiO2 dient. Meistens wurden die Experimente bei hohem Druck und bei Raumtemperatur durchgef{\"u}hrt. Nat{\"u}rliche Schmelzen sind chemisch deutlich komplexer als die einfachen Endglieder SiO2 und GeO2, so dass die Beobachtungen an diesen m{\"o}glicherweise zu falschen Verdichtungsmodellen f{\"u}hren k{\"o}nnen. Weiterhin k{\"o}nnen die Untersuchungen an Gl{\"a}sern bei Raumtemperatur potentiell starke Abweichungen zu Eigenschaften von Schmelzen bei nat{\"u}rlichen thermodynamischen Bedingungen aufweisen. Das Ziel dieser Dissertation war es zu erl{\"a}utern, welchen Einfluss die Zusammensetzung und die Temperatur auf die strukturelle Eigenschaften der Schmelzen unter hohen Dr{\"u}cken haben. Um das zu verstehen, haben wir komplexe alumino-germanatische und alumino-silikatische Gl{\"a}ser studiert. Genauer gesagt, wir haben synthetische Gl{\"a}ser studiert, die eine Zusammensetzung wie das Mineral Albit und wie eine Mischung von Albit-Diopsid im eutektischen Punkt haben. Das Albitglas {\"a}hnelt strukturell einer vereinfachten granitischen Schmelze, w{\"a}hrend das Albit-Diopsid-Glas eine vereinfachte basaltische Schmelze simuliert. Um die lokale Koordinationsumgebung der Elemente zu studieren, haben wir die R{\"o}ntgenabsorptionsspektroskopie in Kombination mit einer Diamantstempelzelle benutzt. Dadurch, dass die Diamanten eine hohe Absorption f{\"u}r R{\"o}ntgenstrahlung mit Energien unterhalb von 10 keV aufweisen, ist die unmittelbare Untersuchung der geologisch sehr relevanten Elemente wie Si, Al, Ca, Mg etc. mit dieser Spektroskopie in Kombination mit einer Diamantstempelzelle nicht m{\"o}glich. Deswegen wurden die Gl{\"a}ser mit Ge und Sr dotiert. Diese Elemente dienen teilweise oder vollst{\"a}ndig als Ersatzelemente f{\"u}r wichtige Hauptelemente. In diesem Sinne, dient Ge als Ersatzelement f{\"u}r Si und andere Netzwerkbildner, w{\"a}hrend Sr Netzwerkwandler wie Z.B. Ca, Na, Mg etc., sowie andere Kationen mit großem Ionenradius ersetzt. Im ersten Schritt haben wir die Ge K-Kante im Ge-Albit-Glass, NaAlGe3O8, bei Raumtemperatur bis 131 GPa untersucht. Dieses Glas hat eine h{\"o}here chemische Komplexit{\"a}t als SiO2 und GeO2, aber es ist immer noch vollst{\"a}ndig polymerisiert. Die Unterschiede im Verdichtungsmechanismus zwischen diesem Glas und den einfachen Oxiden k{\"o}nnen so eindeutig auf h{\"o}here chemische Komplexit{\"a}t zur{\"u}ckgef{\"u}hrt werden. Die partiell mit Ge und Sr dotierten Albit und Albit-Diopsid-Zusammensetzungen wurden bei Raumtemperatur f{\"u}r Ge bis 164 GPa und f{\"u}r Sr bis 42 GPa untersucht. W{\"a}hrend das Albitglass wie NaAlGe3O8 nominelll vollst{\"a}ndig polymerisiert ist, ist das Albit-Diopsid Glas teilweise depolymerisiert. Die Ergebnisse zeigen, dass in allen drei Gl{\"a}sern strukturelle An̈derungen in den ersten 25 bis maximal 30 GPa stattfinden, wobei beide Ge und Sr die maximale Koordinationszahl 6 bzw. ∼9 erreichen. Bei h{\"o}heren Dr{\"u}cken findet in den Gl{\"a}sern nur eine isostrukturelle Schrumpfung der Koordinationspolyeder statt. Der wichtigste Befund der Hochdruckstudien an den alumino-silikatischen und alumino-germanatischen Gl{\"a}sern ist, dass in diesen komplexen Gl{\"a}sern die Polyeder eine viel h{\"o}here Kompressibilit{\"a}t aufweisen als bei den Endgliedern zu beobachten. Das zeigt sich insbesondere durch die starke Verk{\"u}rzung der Ge-O Abst{\"a}nde in dem amorphen NaAlGe3O8 und Albit-Diopsid-Glas bei Dr{\"u}cken {\"u}ber 30 GPa. Zus{\"a}tzlich zu den Effekten der Zusammensetzung auf den Verdichtungsprozess, haben wir den Einfluss der Temperatur auf die strukturelle {\"A}nderungen untersucht. Dazu haben wir das Albit-Diopsid-Glas untersucht, da es den Schmelzen im unteren Mantel chemisch am {\"a}hnlichsten ist. Wir haben die Ge K-Kante der Probe mit einer resistiv-geheizten und einer Laser-geheizter Diamantstempelzelle untersucht, f{\"u}r einen Druckbereich bis zu 48 GPa, sowie einen Temperaturbereich bis 5000 K. Hohe Temperaturen, bei denen die Probe fl{\"u}ssig ist und die f{\"u}r den Erdmantel relevant sind, haben einen bedeutenden Einfluss auf die strukturelle Transformation. Diese wird um ca. 30\% zu deutlich niedrigeren Dr{\"u}cken verschoben, im Vergleich zu den Gl{\"a}sern bei Raumtemperatur und unterhalb von 1000 K. Die Ergebnisse dieser Dissertation stellen einen wichtigen Beitrag fur das Verst{\"a}ndnis der Eigenschaften von Schmelzen unter Bedingungen des unteren Mantels dar. Im Kontext der Diskussion {\"u}ber die Existenz und den Ursprung von silikatischen Schmelzen mit ultrahoher Dichte, welche an der Grenze zwischen Mantel und Erdkern aufgrund seismologischer Daten vermutet werden, zeigen diese Untersuchugen, dass die im Vergleich zur Umgebung h{\"o}here Dichte nicht durch strukturelle Besonderheiten, sondern durch eine besondere chemische Zusammensetzung erkl{\"a}rt werden m{\"u}ssen. Außerdem legen die Ergebnisse nahe, dass f{\"u}r Schmelzen im unteren Erdmantel nur sehr geringe L{\"o}slichkeiten von Edelgasen zu erwarten sind, so dass die strukturellen Eigenschaften deutlich den Gesamthaushalt und Transport der Edelgase im Erdmantel beeinflussen.}, language = {en} } @misc{KabothBahrBahrZeedenetal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Zeeden, Christian and Yamoah, Kweku A. and Lone, Mahjoor Ahmad and Chuang, Chih-Kai and L{\"o}wemark, Ludvig and Wei, Kuo-Yen}, title = {A tale of shifting relations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51573}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515735}, pages = {12}, year = {2021}, abstract = {Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Ni{\~n}o-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.}, language = {en} } @article{KabothBahrBahrZeedenetal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Zeeden, Christian and Yamoah, Kweku A. and Lone, Mahjoor Ahmad and Chuang, Chih-Kai and L{\"o}wemark, Ludvig and Wei, Kuo-Yen}, title = {A tale of shifting relations}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-85444-7}, pages = {10}, year = {2021}, abstract = {Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Ni{\~n}o-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.}, language = {en} } @phdthesis{Wetzel2021, author = {Wetzel, Maria}, title = {Pore space alterations and their impact on hydraulic and mechanical rock properties quantified by numerical simulations}, doi = {10.25932/publishup-51206}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512064}, school = {Universit{\"a}t Potsdam}, pages = {XI, 107}, year = {2021}, abstract = {Geochemical processes such as mineral dissolution and precipitation alter the microstructure of rocks, and thereby affect their hydraulic and mechanical behaviour. Quantifying these property changes and considering them in reservoir simulations is essential for a sustainable utilisation of the geological subsurface. Due to the lack of alternatives, analytical methods and empirical relations are currently applied to estimate evolving hydraulic and mechanical rock properties associated with chemical reactions. However, the predictive capabilities of analytical approaches remain limited, since they assume idealised microstructures, and thus are not able to reflect property evolution for dynamic processes. Hence, aim of the present thesis is to improve the prediction of permeability and stiffness changes resulting from pore space alterations of reservoir sandstones. A detailed representation of rock microstructure, including the morphology and connectivity of pores, is essential to accurately determine physical rock properties. For that purpose, three-dimensional pore-scale models of typical reservoir sandstones, obtained from highly resolved micro-computed tomography (micro-CT), are used to numerically calculate permeability and stiffness. In order to adequately depict characteristic distributions of secondary minerals, the virtual samples are systematically altered and resulting trends among the geometric, hydraulic, and mechanical rock properties are quantified. It is demonstrated that the geochemical reaction regime controls the location of mineral precipitation within the pore space, and thereby crucially affects the permeability evolution. This emphasises the requirement of determining distinctive porosity-permeability relationships by means of digital pore-scale models. By contrast, a substantial impact of spatial alterations patterns on the stiffness evolution of reservoir sandstones are only observed in case of certain microstructures, such as highly porous granular rocks or sandstones comprising framework-supporting cementations. In order to construct synthetic granular samples a process-based approach is proposed including grain deposition and diagenetic cementation. It is demonstrated that the generated samples reliably represent the microstructural complexity of natural sandstones. Thereby, general limitations of imaging techniques can be overcome and various realisations of granular rocks can be flexibly produced. These can be further altered by virtual experiments, offering a fast and cost-effective way to examine the impact of precipitation, dissolution or fracturing on various petrophysical correlations. The presented research work provides methodological principles to quantify trends in permeability and stiffness resulting from geochemical processes. The calculated physical property relations are directly linked to pore-scale alterations, and thus have a higher accuracy than commonly applied analytical approaches. This will considerably improve the predictive capabilities of reservoir models, and is further relevant to assess and reduce potential risks, such as productivity or injectivity losses as well as reservoir compaction or fault reactivation. Hence, the proposed method is of paramount importance for a wide range of natural and engineered subsurface applications, including geothermal energy systems, hydrocarbon reservoirs, CO2 and energy storage as well as hydrothermal deposit exploration.}, language = {en} } @phdthesis{Gholamrezaie2021, author = {Gholamrezaie, Ershad}, title = {Variations of lithospheric strength in different tectonic settings}, doi = {10.25932/publishup-51146}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511467}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 147}, year = {2021}, abstract = {Rheology describes the flow of matter under the influence of stress, and - related to solids- it investigates how solids subjected to stresses deform. As the deformation of the Earth's outer layers, the lithosphere and the crust, is a major focus of rheological studies, rheology in the geosciences describes how strain evolves in rocks of variable composition and temperature under tectonic stresses. It is here where deformation processes shape the form of ocean basins and mountain belts that ultimately result from the complex interplay between lithospheric plate motion and the susceptibility of rocks to the influence of plate-tectonic forces. A rigorous study of the strength of the lithosphere and deformation phenomena thus requires in-depth studies of the rheological characteristics of the involved materials and the temporal framework of deformation processes. This dissertation aims at analyzing the influence of the physical configuration of the lithosphere on the present-day thermal field and the overall rheological characteristics of the lithosphere to better understand variable expressions in the formation of passive continental margins and the behavior of strike-slip fault zones. The main methodological approach chosen is to estimate the present-day thermal field and the strength of the lithosphere by 3-D numerical modeling. The distribution of rock properties is provided by 3-D structural models, which are used as the basis for the thermal and rheological modeling. The structural models are based on geophysical and geological data integration, additionally constrained by 3-D density modeling. More specifically, to decipher the thermal and rheological characteristics of the lithosphere in both oceanic and continental domains, sedimentary basins in the Sea of Marmara (continental transform setting), the SW African passive margin (old oceanic crust), and the Norwegian passive margin (young oceanic crust) were selected for this study. The Sea of Marmara, in northwestern Turkey, is located where the dextral North Anatolian Fault zone (NAFZ) accommodates the westward escape of the Anatolian Plate toward the Aegean. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the lateral crustal heterogeneities is presented for the first time in this study. Here, I use different gravity datasets and the general non-uniqueness in potential field modeling, to propose three possible end-member scenarios of crustal configuration. The models suggest that pronounced gravitational anomalies in the basin originate from significant density heterogeneities within the crust. The rheological modeling reveals that associated variations in lithospheric strength control the mechanical segmentation of the NAFZ. Importantly, a strong crust that is mechanically coupled to the upper mantle spatially correlates with aseismic patches where the fault bends and changes its strike in response to the presence of high-density lower crustal bodies. Between the bends, mechanically weaker crustal domains that are decoupled from the mantle are characterized by creep. For the passive margins of SW Africa and Norway, two previously published 3-D conductive and lithospheric-scale thermal models were analyzed. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data, such as seismic observations and the gravity field. Here, the rheological modeling suggests that the present-day lithospheric strength across the oceanic domain is ultimately affected by the age and past thermal and tectonic processes as well as the depth of the thermal lithosphere-asthenosphere boundary, while the configuration of the crystalline crust dominantly controls the rheological behavior of the lithosphere beneath the continental domains of both passive margins. The thermal and rheological models show that the variations of lithospheric strength are fundamentally influenced by the temperature distribution within the lithosphere. Moreover, as the composition of the lithosphere significantly influences the present-day thermal field, it therefore also affects the rheological characteristics of the lithosphere. Overall my studies add to our understanding of regional tectonic deformation processes and the long-term behavior of sedimentary basins; they confirm other analyses that have pointed out that crustal heterogeneities in the continents result in diverse lithospheric thermal characteristics, which in turn results in higher complexity and variations of rheological behavior compared to oceanic domains with a thinner, more homogeneous crust.}, language = {en} } @phdthesis{Davis2021, author = {Davis, Timothy}, title = {An analytical and numerical analysis of fluid-filled crack propagation in three dimensions}, doi = {10.25932/publishup-50960}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509609}, school = {Universit{\"a}t Potsdam}, pages = {xi, 187}, year = {2021}, abstract = {Fluids in the Earth's crust can move by creating and flowing through fractures, in a process called `hydraulic fracturing'. The tip-line of such fluid-filled fractures grows at locations where stress is larger than the strength of the rock. Where the tip stress vanishes, the fracture closes and the fluid-front retreats. If stress gradients exist on the fracture's walls, induced by fluid/rock density contrasts or topographic stresses, this results in an asymmetric shape and growth of the fracture, allowing for the contained batch of fluid to propagate through the crust. The state-of-the-art analytical and numerical methods to simulate fluid-filled fracture propagation are two-dimensional (2D). In this work I extend these to three dimensions (3D). In my analytical method, I approximate the propagating 3D fracture as a penny-shaped crack that is influenced by both an internal pressure and stress gradients. In addition, I develop a numerical method to model propagation where curved fractures can be simulated as a mesh of triangular dislocations, with the displacement of faces computed using the displacement discontinuity method. I devise a rapid technique to approximate stress intensity and use this to calculate the advance of the tip-line. My 3D models can be applied to arbitrary stresses, topographic and crack shapes, whilst retaining short computation times. I cross-validate my analytical and numerical methods and apply them to various natural and man-made settings, to gain additional insights into the movements of hydraulic fractures such as magmatic dikes and fluid injections in rock. In particular, I calculate the `volumetric tipping point', which once exceeded allows a fluid-filled fracture to propagate in a `self-sustaining' manner. I discuss implications this has for hydro-fracturing in industrial operations. I also present two studies combining physical models that define fluid-filled fracture trajectories and Bayesian statistical techniques. In these studies I show that the stress history of the volcanic edifice defines the location of eruptive vents at volcanoes. Retrieval of the ratio between topographic to remote stresses allows for forecasting of probable future vent locations. Finally, I address the mechanics of 3D propagating dykes and sills in volcanic regions. I focus on Sierra Negra volcano in the Gal\'apagos islands, where in 2018, a large sill propagated with an extremely curved trajectory. Using a 3D analysis, I find that shallow horizontal intrusions are highly sensitive to topographic and buoyancy stress gradients, as well as the effects of the free surface.}, language = {en} } @phdthesis{Cheng2021, author = {Cheng, Chaojie}, title = {Transient permeability in porous and fractured sandstones mediated by fluid-rock interactions}, doi = {10.25932/publishup-51012}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-510124}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 148}, year = {2021}, abstract = {Understanding the fluid transport properties of subsurface rocks is essential for a large number of geotechnical applications, such as hydrocarbon (oil/gas) exploitation, geological storage (CO2/fluids), and geothermal reservoir utilization. To date, the hydromechanically-dependent fluid flow patterns in porous media and single macroscopic rock fractures have received numerous investigations and are relatively well understood. In contrast, fluid-rock interactions, which may permanently affect rock permeability by reshaping the structure and changing connectivity of pore throats or fracture apertures, need to be further elaborated. This is of significant importance for improving the knowledge of the long-term evolution of rock transport properties and evaluating a reservoir' sustainability. The thesis focuses on geothermal energy utilization, e.g., seasonal heat storage in aquifers and enhanced geothermal systems, where single fluid flow in porous rocks and rock fracture networks under various pressure and temperature conditions dominates. In this experimental study, outcrop samples (i.e., Flechtinger sandstone, an illite-bearing Lower Permian rock, and Fontainebleau sandstone, consisting of pure quartz) were used for flow-through experiments under simulated hydrothermal conditions. The themes of the thesis are (1) the investigation of clay particle migration in intact Flechtinger sandstone and the coincident permeability damage upon cyclic temperature and fluid salinity variations; (2) the determination of hydro-mechanical properties of self-propping fractures in Flechtinger and Fontainebleau sandstones with different fracture features and contrasting mechanical properties; and (3) the investigation of the time-dependent fracture aperture evolution of Fontainebleau sandstone induced by fluid-rock interactions (i.e., predominantly pressure solution). Overall, the thesis aims to unravel the mechanisms of the instantaneous reduction (i.e., direct responses to thermo-hydro-mechanical-chemical (THMC) conditions) and progressively-cumulative changes (i.e., time-dependence) of rock transport properties. Permeability of intact Flechtinger sandstone samples was measured under each constant condition, where temperature (room temperature up to 145 °C) and fluid salinity (NaCl: 0 ~ 2 mol/l) were stepwise changed. Mercury intrusion porosimetry (MIP), electron microprobe analysis (EMPA), and scanning electron microscopy (SEM) were performed to investigate the changes of local porosity, microstructures, and clay element contents before and after the experiments. The results indicate that the permeability of illite-bearing Flechtinger sandstones will be impaired by heating and exposure to low salinity pore fluids. The chemically induced permeability variations prove to be path-dependent concerning the applied succession of fluid salinity changes. The permeability decay induced by a temperature increase and a fluid salinity reduction operates by relatively independent mechanisms, i.e., thermo-mechanical and thermo-chemical effects. Further, the hydro-mechanical investigations of single macroscopic fractures (aligned, mismatched tensile fractures, and smooth saw-cut fractures) illustrate that a relative fracture wall offset could significantly increase fracture aperture and permeability, but the degree of increase depends on fracture surface roughness. X-ray computed tomography (CT) demonstrates that the contact area ratio after the pressure cycles is inversely correlated to the fracture offset. Moreover, rock mechanical properties, determining the strength of contact asperities, are crucial so that relatively harder rock (i.e., Fontainebleau sandstone) would have a higher self-propping potential for sustainable permeability during pressurization. This implies that self-propping rough fractures with a sufficient displacement are efficient pathways for fluid flow if the rock matrix is mechanically strong. Finally, two long-term flow-through experiments with Fontainebleau sandstone samples containing single fractures were conducted with an intermittent flow (~140 days) and continuous flow (~120 days), respectively. Permeability and fluid element concentrations were measured throughout the experiments. Permeability reduction occurred at the beginning stage when the stress was applied, while it converged at later stages, even under stressed conditions. Fluid chemistry and microstructure observations demonstrate that pressure solution governs the long-term fracture aperture deformation, with remarkable effects of the pore fluid (Si) concentration and the structure of contact grain boundaries. The retardation and the cessation of rock fracture deformation are mainly induced by the contact stress decrease due to contact area enlargement and a dissolved mass accumulation within the contact boundaries. This work implies that fracture closure under constant (pressure/stress and temperature) conditions is likely a spontaneous process, especially at the beginning stage after pressurization when the contact area is relatively small. In contrast, a contact area growth yields changes of fracture closure behavior due to the evolution of contact boundaries and concurrent changes in their diffusive properties. Fracture aperture and thus permeability will likely be sustainable in the long term if no other processes (e.g., mineral precipitations in the open void space) occur.}, language = {en} } @phdthesis{BayonaViveros2021, author = {Bayona Viveros, Jose}, title = {Constructing global stationary seismicity models from the long-term balance of interseismic strain measurements and earthquake-catalog data}, doi = {10.25932/publishup-50927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509270}, school = {Universit{\"a}t Potsdam}, pages = {ix, 83}, year = {2021}, abstract = {One third of the world's population lives in areas where earthquakes causing at least slight damage are frequently expected. Thus, the development and testing of global seismicity models is essential to improving seismic hazard estimates and earthquake-preparedness protocols for effective disaster-risk mitigation. Currently, the availability and quality of geodetic data along plate-boundary regions provides the opportunity to construct global models of plate motion and strain rate, which can be translated into global maps of forecasted seismicity. Moreover, the broad coverage of existing earthquake catalogs facilitates in present-day the calibration and testing of global seismicity models. As a result, modern global seismicity models can integrate two independent factors necessary for physics-based, long-term earthquake forecasting, namely interseismic crustal strain accumulation and sudden lithospheric stress release. In this dissertation, I present the construction of and testing results for two global ensemble seismicity models, aimed at providing mean rates of shallow (0-70 km) earthquake activity for seismic hazard assessment. These models depend on the Subduction Megathrust Earthquake Rate Forecast (SMERF2), a stationary seismicity approach for subduction zones, based on the conservation of moment principle and the use of regional "geodesy-to-seismicity" parameters, such as corner magnitudes, seismogenic thicknesses and subduction dip angles. Specifically, this interface-earthquake model combines geodetic strain rates with instrumentally-recorded seismicity to compute long-term rates of seismic and geodetic moment. Based on this, I derive analytical solutions for seismic coupling and earthquake activity, which provide this earthquake model with the initial abilities to properly forecast interface seismicity. Then, I integrate SMERF2 interface-seismicity estimates with earthquake computations in non-subduction zones provided by the Seismic Hazard Inferred From Tectonics based on the second iteration of the Global Strain Rate Map seismicity approach to construct the global Tectonic Earthquake Activity Model (TEAM). Thus, TEAM is designed to reduce number, and potentially spatial, earthquake inconsistencies of its predecessor tectonic earthquake model during the 2015-2017 period. Also, I combine this new geodetic-based earthquake approach with a global smoothed-seismicity model to create the World Hybrid Earthquake Estimates based on Likelihood scores (WHEEL) model. This updated hybrid model serves as an alternative earthquake-rate approach to the Global Earthquake Activity Rate model for forecasting long-term rates of shallow seismicity everywhere on Earth. Global seismicity models provide scientific hypotheses about when and where earthquakes may occur, and how big they might be. Nonetheless, the veracity of these hypotheses can only be either confirmed or rejected after prospective forecast evaluation. Therefore, I finally test the consistency and relative performance of these global seismicity models with independent observations recorded during the 2014-2019 pseudo-prospective evaluation period. As a result, hybrid earthquake models based on both geodesy and seismicity are the most informative seismicity models during the testing time frame, as they obtain higher information scores than their constituent model components. These results support the combination of interseismic strain measurements with earthquake-catalog data for improved seismicity modeling. However, further prospective evaluations are required to more accurately describe the capacities of these global ensemble seismicity models to forecast longer-term earthquake activity.}, language = {en} } @phdthesis{Ibarra2021, author = {Ibarra, Federico}, title = {The thermal and rheological state of the Central Andes and its relationship to active deformation processes}, doi = {10.25932/publishup-50622}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-506226}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 149}, year = {2021}, abstract = {The Central Andes region in South America is characterized by a complex and heterogeneous deformation system. Recorded seismic activity and mapped neotectonic structures indicate that most of the intraplate deformation is located along the margins of the orogen, in the transitions to the foreland and the forearc. Furthermore, the actively deforming provinces of the foreland exhibit distinct deformation styles that vary along strike, as well as characteristic distributions of seismicity with depth. The style of deformation transitions from thin-skinned in the north to thick-skinned in the south, and the thickness of the seismogenic layer increases to the south. Based on geological/geophysical observations and numerical modelling, the most commonly invoked causes for the observed heterogeneity are the variations in sediment thickness and composition, the presence of inherited structures, and changes in the dip of the subducting Nazca plate. However, there are still no comprehensive investigations on the relationship between the lithospheric composition of the Central Andes, its rheological state and the observed deformation processes. The central aim of this dissertation is therefore to explore the link between the nature of the lithosphere in the region and the location of active deformation. The study of the lithospheric composition by means of independent-data integration establishes a strong base to assess the thermal and rheological state of the Central Andes and its adjacent lowlands, which alternatively provide new foundations to understand the complex deformation of the region. In this line, the general workflow of the dissertation consists in the construction of a 3D data-derived and gravity-constrained density model of the Central Andean lithosphere, followed by the simulation of the steady-state conductive thermal field and the calculation of strength distribution. Additionally, the dynamic response of the orogen-foreland system to intraplate compression is evaluated by means of 3D geodynamic modelling. The results of the modelling approach suggest that the inherited heterogeneous composition of the lithosphere controls the present-day thermal and rheological state of the Central Andes, which in turn influence the location and depth of active deformation processes. Most of the seismic activity and neo--tectonic structures are spatially correlated to regions of modelled high strength gradients, in the transition from the felsic, hot and weak orogenic lithosphere to the more mafic, cooler and stronger lithosphere beneath the forearc and the foreland. Moreover, the results of the dynamic simulation show a strong localization of deviatoric strain rate second invariants in the same region suggesting that shortening is accommodated at the transition zones between weak and strong domains. The vertical distribution of seismic activity appears to be influenced by the rheological state of the lithosphere as well. The depth at which the frequency distribution of hypocenters starts to decrease in the different morphotectonic units correlates with the position of the modelled brittle-ductile transitions; accordingly, a fraction of the seismic activity is located within the ductile part of the crust. An exhaustive analysis shows that practically all the seismicity in the region is restricted above the 600°C isotherm, in coincidence with the upper temperature limit for brittle behavior of olivine. Therefore, the occurrence of earthquakes below the modelled brittle-ductile could be explained by the presence of strong residual mafic rocks from past tectonic events. Another potential cause of deep earthquakes is the existence of inherited shear zones in which brittle behavior is favored through a decrease in the friction coefficient. This hypothesis is particularly suitable for the broken foreland provinces of the Santa Barbara System and the Pampean Ranges, where geological studies indicate successive reactivation of structures through time. Particularly in the Santa Barbara System, the results indicate that both mafic rocks and a reduction in friction are required to account for the observed deep seismic events.}, language = {en} } @phdthesis{Duesing2021, author = {D{\"u}sing, Walter}, title = {From changes in the Earth's orbit to African climate variability}, doi = {10.25932/publishup-50314}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-503140}, school = {Universit{\"a}t Potsdam}, pages = {77}, year = {2021}, abstract = {We developed an orbital tuned age model for the composite Chew Bahir sediment core, obtained from the Chew Bahir basin (CHB), southern Ethiopia. To account for the effects of sedimentation rate changes on the spectral expression of the orbital cycles we developed a new method: the Multi-band Wavelet Age modeling technique (MUBAWA). By using a Continuous Wavelet Transformation, we were able to track frequency shifts that resulted from changing sedimentation rates and thus calculated tuned age model encompassing the last 620 kyrs. The results show a good agreement with the directly dated age model that is available from the dating of volcanic ashes. Then we used the XRF data from CHB and developed a new and robust humid-arid index of east African climate during the last 620 kyrs. To disentangle the relationship of the selected elements we performed a principal component analysis (PCA). In a following step we applied a continuous wavelet transformation on the PC1, using the directly dated age model. The resulting wavelet power spectrum, unlike a normal power spectrum, displays the occurrence of cycles/frequencies in time. The results highlight that the precession cycles are most dominantly expressed under the 400 kyrs eccentricity maximum whereas weakly expressed during eccentricity minimum. This suggests that insolation is a key driver of the climatic variability observed at CHB throughout the last 620 kyrs. In addition, the prevalence of half-precession and obliquity signals was documented. The latter is attributed to the inter-tropical insolation gradient and not interpreted as an imprint of high latitudes forcing on climatic changes in the tropics. In addition, a windowed analysis of variability was used to detect changes in variance over time and showed that strong climate variability occurred especially along the transition from a dominant insolation-controlled humid climate background state towards a predominantly dry and less-insolation controlled climate. The last chapter dealt with non-linear aspects of climate changes represented by the sediments of the CHB. We use recurrence quantification analysis to detect non-linear changes within the potassium concentration of Chew Bahir sediment cores during the last 620 kyrs. The concentration of potassium in the sediments of the lake is subject to geochemical processes related to the evaporation rate of the lake water at the time of deposition. Based on recurrence analysis, two types of variabilities could be distinguished. Type 1 represents slow variations within the precession period bandwidth of 20 kyrs and a tendency towards extreme climatic events whereas type 2 represents fast, highly variable climatic transitions between wet and dry climate states. While type 1 variability is linked to eccentricity maxima, type 2 variability occurs during the 400 kyrs eccentricity minimum. The climate history presented here shows that during high eccentricity a strongly insolation-driven climate system prevailed, whereas during low eccentricity the climate was more strongly affected by short-term variability changes. The short-term environmental changes, reflected in the increased variability might have influenced the evolution, technological advances and expansion of early modern humans who lived in this region. In the Olorgesaille Basin the temporal changes in the occurrence of stone tools, which bracket the transition from Acheulean to Middle Stone Age (MSA) technologies at between 499-320 kyrs, could potentially correlate to the marked transition from a rather stable climate with less variability to a climate with increased variability in the CHB. We conclude that populations of early anatomically modern humans are more likely to have experienced climatic stress during episodes of low eccentricity, associated with dry and high variability climate conditions, which may have led to technological innovation, such as the transition from the Acheulean to the Middle Stone Age.}, language = {en} } @phdthesis{MogrovejoArias2021, author = {Mogrovejo Arias, Diana Carolina}, title = {Assessment of the frequency and relevance of potentially pathogenic phenotypes in microbial isolates from Arctic environments}, school = {Universit{\"a}t Potsdam}, pages = {125}, year = {2021}, abstract = {The Arctic environments constitute rich and dynamic ecosystems, dominated by microorganisms extremely well adapted to survive and function under severe conditions. A range of physiological adaptations allow the microbiota in these habitats to withstand low temperatures, low water and nutrient availability, high levels of UV radiation, etc. In addition, other adaptations of clear competitive nature are directed at not only surviving but thriving in these environments, by disrupting the metabolism of neighboring cells and affecting intermicrobial communication. Since Arctic microbes are bioindicators which amplify climate alterations in the environment, the Arctic region presents the opportunity to study local microbiota and carry out research about interesting, potentially virulent phenotypes that could be dispersed into other habitats around the globe as a consequence of accelerating climate change. In this context, exploration of Arctic habitats as well as descriptions of the microbes inhabiting them are abundant but microbial competitive strategies commonly associated with virulence and pathogens are rarely reported. In this project, environmental samples from the Arctic region were collected and microorganisms (bacteria and fungi) were isolated. The clinical relevance of these microorganisms was assessed by observing the following virulence markers: ability to grow at a range of temperatures, expression of antimicrobial resistance and production of hemolysins. The aim of this project is to determine the frequency and relevance of these characteristics in an effort to understand microbial adaptations in habitats threatened by climate change. The isolates obtained and described here were able to grow at a range of temperatures, in some cases more than 30 °C higher than their original isolation temperature. A considerable number of them consistently expressed compounds capable of lysing sheep and bovine erythrocytes on blood agar at different incubation temperatures. Ethanolic extracts of these bacteria were able to cause rapid and complete lysis of erythrocyte suspensions and might even be hemolytic when assayed on human blood. In silico analyses showed a variety of resistance elements, some of them novel, against natural and synthetic antimicrobial compounds. In vitro experiments against a number of antimicrobial compounds showed resistance phenotypes belonging to wild-type populations and some non-wild type which clearly denote human influence in the acquisition of antimicrobial resistance. The results of this project demonstrate the presence of virulence-associated factors expressed by microorganisms of natural, non-clinical environments. This study contains some of the first reports, to the best of our knowledge, of hemolytic microbes isolated from the Arctic region. In addition, it provides additional information about the presence and expression of intrinsic and acquired antimicrobial resistance in environmental isolates, contributing to the understanding of the evolution of relevant pathogenic species and opportunistic pathogens. Finally, this study highlights some of the potential risks associated with changes in the polar regions (habitat melting and destruction, ecosystem transition and re-colonization) as important indirect consequences of global warming and altered climatic conditions around the planet.}, language = {en} } @phdthesis{Koerting2021, author = {Koerting, Friederike Magdalena}, title = {Hybrid imaging spectroscopy approaches for open pit mining}, doi = {10.25932/publishup-49909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-499091}, school = {Universit{\"a}t Potsdam}, pages = {xxix, 269}, year = {2021}, abstract = {This work develops hybrid methods of imaging spectroscopy for open pit mining and examines their feasibility compared with state-of-the-art. The material distribution within a mine face differs in the small scale and within daily assigned extraction segments. These changes can be relevant to subsequent processing steps but are not always visually identifiable prior to the extraction. Misclassifications that cause false allocations of extracted material need to be minimized in order to reduce energy-intensive material re-handling. The use of imaging spectroscopy aspires to the allocation of relevant deposit-specific materials before extraction, and allows for efficient material handling after extraction. The aim of this work is the parameterization of imaging spectroscopy for pit mining applications and the development and evaluation of a workflow for a mine face, ground- based, spectral characterization. In this work, an application-based sensor adaptation is proposed. The sensor complexity is reduced by down-sampling the spectral resolution of the system based on the samples' spectral characteristics. This was achieved by the evaluation of existing hyperspectral outcrop analysis approaches based on laboratory sample scans from the iron quadrangle in Minas Gerais, Brazil and by the development of a spectral mine face monitoring workflow which was tested for both an operating and an inactive open pit copper mine in the Republic of Cyprus. The workflow presented here is applied to three regional data sets: 1) Iron ore samples from Brazil, (laboratory); 2) Samples and hyperspectral mine face imagery from the copper-gold-pyrite mine Apliki, Republic of Cyprus (laboratory and mine face data); and 3) Samples and hyperspectral mine face imagery from the copper-gold-pyrite deposit Three Hills, Republic of Cyprus (laboratory and mine face data). The hyperspectral laboratory dataset of fifteen Brazilian iron ore samples was used to evaluate different analysis methods and different sensor models. Nineteen commonly used methods to analyze and map hyperspectral data were compared regarding the methods' resulting data products and the accuracy of the mapping and the analysis computation time. Four of the evaluated methods were determined for subsequent analyses to determine the best-performing algorithms: The spectral angle mapper (SAM), a support vector machine algorithm (SVM), the binary feature fitting algorithm (BFF) and the EnMap geological mapper (EnGeoMap). Next, commercially available imaging spectroscopy sensors were evaluated for their usability in open pit mining conditions. Step-wise downsampling of the data - the reduction of the number of bands with an increase of each band's bandwidth - was performed to investigate the possible simplification and ruggedization of a sensor without a quality fall-off of the mapping results. The impact of the atmosphere visible in the spectrum between 1300-2010nm was reduced by excluding the spectral range from the data for mapping. This tested the feasibility of the method under realistic open pit data conditions. Thirteen datasets based on the different, downsampled sensors were analyzed with the four predetermined methods. The optimum sensor for spectral mine face material distinction was determined as a VNIR-SWIR sensor with 40nm bandwidths in the VNIR and 15nm bandwidths in the SWIR spectral range and excluding the atmospherically impacted bands. The Apliki mine sample dataset was used for the application of the found optimal analyses and sensors. Thirty-six samples were analyzed geochemically and mineralogically. The sample spectra were compiled to two spectral libraries, both distinguishing between seven different geochemical-spectral clusters. The reflectance dataset was downsampled to five different sensors. The five different datasets were mapped with the SAM, BFF and SVM method achieving mapping accuracies of 85-72\%, 85-76\% and 57-46\% respectively. One mine face scan of Apliki was used for the application of the developed workflow. The mapping results were validated against the geochemistry and mineralogy of thirty-six documented field sampling points and a zonation map of the mine face which is based on sixty-six samples and field mapping. The mine face was analyzed with SAM and BFF. The analysis maps were visualized on top of a Structure-from-Motion derived 3D model of the open pit. The mapped geological units and zones correlate well with the expected zonation of the mine face. The third set of hyperspectral imagery from Three Hills was available for applying the fully-developed workflow. Geochemical sample analyses and laboratory spectral data of fifteen different samples from the Three Hills mine, Republic of Cyprus, were used to analyse a downsampled mine face scan of the open pit. Here, areas of low, medium and high ore content were identified. The developed workflow is successfully applied to the open pit mines Apliki and Three Hills and the spectral maps reflect the prevailing geological conditions. This work leads through the acquisition, preparation and processing of imaging spectroscopy data, the optimum choice of analysis methodology, and the utilization of simplified, robust sensors that meet the requirements of open pit mining conditions. It accentuates the importance of a site-specific and deposit-specific spectral library for the mine face analysis and underlines the need for geological and spectral analysis experts to successfully implement imaging spectroscopy in the field of open pit mining.}, language = {en} } @phdthesis{Repasch2021, author = {Repasch, Marisa}, title = {Fluvial sediment routing and the carbon cycle}, doi = {10.25932/publishup-49397}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-493978}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 176}, year = {2021}, abstract = {By regulating the concentration of carbon in our atmosphere, the global carbon cycle drives changes in our planet's climate and habitability. Earth surface processes play a central, yet insufficiently constrained role in regulating fluxes of carbon between terrestrial reservoirs and the atmosphere. River systems drive global biogeochemical cycles by redistributing significant masses of carbon across the landscape. During fluvial transit, the balance between carbon oxidation and preservation determines whether this mass redistribution is a net atmospheric CO2 source or sink. Existing models for fluvial carbon transport fail to integrate the effects of sediment routing processes, resulting in large uncertainties in fluvial carbon fluxes to the oceans. In this Ph.D. dissertation, I address this knowledge gap through three studies that focus on the timescale and routing pathways of fluvial mass transfer and show their effect on the composition and fluxes of organic carbon exported by rivers. The hypotheses posed in these three studies were tested in an analog lowland alluvial river system - the Rio Bermejo in Argentina. The Rio Bermejo annually exports more than 100 Mt of sediment and organic matter from the central Andes, and transports this material nearly 1300 km downstream across the lowland basin without influence from tributaries, allowing me to isolate the effects of geomorphic processes on fluvial organic carbon cycling. These studies focus primarily on the geochemical composition of suspended sediment collected from river depth profiles along the length of the Rio Bermejo. In Chapter 3, I aimed to determine the mean fluvial sediment transit time for the Rio Bermejo and evaluate the geomorphic processes that regulate the rate of downstream sediment transfer. I developed a framework to use meteoric cosmogenic 10Be (10Bem) as a chronometer to track the duration of sediment transit from the mountain front downstream along the ~1300 km channel of the Rio Bermejo. I measured 10Bem concentrations in suspended sediment sampled from depth profiles, and found a 230\% increase along the fluvial transit pathway. I applied a simple model for the time-dependent accumulation of 10Bem on the floodplain to estimate a mean sediment transit time of 8.5±2.2 kyr. Furthermore, I show that sediment transit velocity is influenced by lateral migration rate and channel morphodynamics. This approach to measuring sediment transit time is much more precise than other methods previously used and shows promise for future applications. In Chapter 4, I aimed to quantify the effects of hydrodynamic sorting on the composition and quantity of particulate organic carbon (POC) export transported by lowland rivers. I first used scanning electron miscroscopy (SEM) coupled with nanoscale secondary ion mass spectrometry (NanoSIMS) analyses to show that the Bermejo transports two principal types of POC: 1) mineral-bound organic carbon associated with <4 µm, platy grains, and 2) coarse discrete organic particles. Using n-alkane stable isotope data and particle shape analysis, I showed that these two carbon pools are vertically sorted in the water column, due to differences in particle settling velocity. This vertical sorting may drive modern POC to be transported efficiently from source-to-sink, driving efficient CO2 drawdown. Simultaneously, vertical sorting may drive degraded, mineral-bound POC to be deposited overbank and stored on the floodplain for centuries to millennia, resulting in enhanced POC remineralization. In the Rio Bermejo, selective deposition of coarse material causes the proportion of mineral-bound POC to increase with distance downstream, but the majority of exported POC is composed of discrete organic particles, suggesting that the river is a net carbon sink. In summary, this study shows that selective deposition and hydraulic sorting control the composition and fate of fluvial POC during fluvial transit. In Chapter 5, I characterized and quantified POC transformation and oxidation during fluvial transit. I analyzed the radiocarbon content and stable carbon isotopic composition of Rio Bermejo suspended sediment and found that POC ages during fluvial transit, but is also degraded and oxidized during transient floodplain storage. Using these data, I developed a conceptual model for fluvial POC cycling that allows the estimation of POC oxidation relative to POC export, and ultimately reveals whether a river is a net source or sink of CO2 to the atmosphere. Through this study, I found that the Rio Bermejo annually exports more POC than is oxidized during transit, largely due to high rates of lateral migration that cause erosion of floodplain vegetation and soil into the river. These results imply that human engineering of rivers could alter the fluvial carbon balance, by reducing lateral POC inputs and increasing the mean sediment transit time. Together, these three studies quantitatively link geomorphic processes to rates of POC transport and degradation across sub-annual to millennial time scales and nanoscale to 103 km spatial scales, laying the groundwork for a global-scale fluvial organic carbon cycling model.}, language = {en} } @phdthesis{TabaresJimenez2021, author = {Tabares Jimenez, Ximena del Carmen}, title = {A palaeoecological approach to savanna dynamics and shrub encroachment in Namibia}, doi = {10.25932/publishup-49281}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-492815}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2021}, abstract = {The spread of shrubs in Namibian savannas raises questions about the resilience of these ecosystems to global change. This makes it necessary to understand the past dynamics of the vegetation, since there is no consensus on whether shrub encroachment is a new phenomenon, nor on its main drivers. However, a lack of long-term vegetation datasets for the region and the scarcity of suitable palaeoecological archives, makes reconstructing past vegetation and land cover of the savannas a challenge. To help meet this challenge, this study addresses three main research questions: 1) is pollen analysis a suitable tool to reflect the vegetation change associated with shrub encroachment in savanna environments? 2) Does the current encroached landscape correspond to an alternative stable state of savanna vegetation? 3) To what extent do pollen-based quantitative vegetation reconstructions reflect changes in past land cover? The research focuses on north-central Namibia, where despite being the region most affected by shrub invasion, particularly since the 21st century, little is known about the dynamics of this phenomenon. Field-based vegetation data were compared with modern pollen data to assess their correspondence in terms of composition and diversity along precipitation and grazing intensity gradients. In addition, two sediment cores from Lake Otjikoto were analysed to reveal changes in vegetation composition that have occurred in the region over the past 170 years and their possible drivers. For this, a multiproxy approach (fossil pollen, sedimentary ancient DNA (sedaDNA), biomarkers, compound specific carbon (δ13C) and deuterium (δD) isotopes, bulk carbon isotopes (δ13Corg), grain size, geochemical properties) was applied at high taxonomic and temporal resolution. REVEALS modelling of the fossil pollen record from Lake Otjikoto was run to quantitatively reconstruct past vegetation cover. For this, we first made pollen productivity estimates (PPE) of the most relevant savanna taxa in the region using the extended R-value model and two pollen dispersal options (Gaussian plume model and Lagrangian stochastic model). The REVEALS-based vegetation reconstruction was then validated using remote sensing-based regional vegetation data. The results show that modern pollen reflects the composition of the vegetation well, but diversity less well. Interestingly, precipitation and grazing explain a significant amount of the compositional change in the pollen and vegetation spectra. The multiproxy record shows that a state change from open Combretum woodland to encroached Terminalia shrubland can occur over a century, and that the transition between states spans around 80 years and is characterized by a unique vegetation composition. This transition is supported by gradual environmental changes induced by management (i.e. broad-scale logging for the mining industry, selective grazing and reduced fire activity associated with intensified farming) and related land-use change. Derived environmental changes (i.e. reduced soil moisture, reduced grass cover, changes in species composition and competitiveness, reduced fire intensity) may have affected the resilience of Combretum open woodlands, making them more susceptible to change to an encroached state by stochastic events such as consecutive years of precipitation and drought, and by high concentrations of pCO2. We assume that the resulting encroached state was further stabilized by feedback mechanisms that favour the establishment and competitiveness of woody vegetation. The REVEALS-based quantitative estimates of plant taxa indicate the predominance of a semi-open landscape throughout the 20th century and a reduction in grass cover below 50\% since the 21st century associated with the spread of encroacher woody taxa. Cover estimates show a close match with regional vegetation data, providing support for the vegetation dynamics inferred from multiproxy analyses. Reasonable PPEs were made for all woody taxa, but not for Poaceae. In conclusion, pollen analysis is a suitable tool to reconstruct past vegetation dynamics in savannas. However, because pollen cannot identify grasses beyond family level, a multiproxy approach, particularly the use of sedaDNA, is required. I was able to separate stable encroached states from mere woodland phases, and could identify drivers and speculate about related feedbacks. In addition, the REVEALS-based quantitative vegetation reconstruction clearly reflects the magnitude of the changes in the vegetation cover that occurred during the last 130 years, despite the limitations of some PPEs. This research provides new insights into pollen-vegetation relationships in savannas and highlights the importance of multiproxy approaches when reconstructing past vegetation dynamics in semi-arid environments. It also provides the first time series with sufficient taxonomic resolution to show changes in vegetation composition during shrub encroachment, as well as the first quantitative reconstruction of past land cover in the region. These results help to identify the different stages in savanna dynamics and can be used to calibrate predictive models of vegetation change, which are highly relevant to land management.}, language = {en} }