@phdthesis{Schifferle2024, author = {Schifferle, Lukas}, title = {Optical properties of (Mg,Fe)O at high pressure}, doi = {10.25932/publishup-62216}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622166}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 90}, year = {2024}, abstract = {Large parts of the Earth's interior are inaccessible to direct observation, yet global geodynamic processes are governed by the physical material properties under extreme pressure and temperature conditions. It is therefore essential to investigate the deep Earth's physical properties through in-situ laboratory experiments. With this goal in mind, the optical properties of mantle minerals at high pressure offer a unique way to determine a variety of physical properties, in a straight-forward, reproducible, and time-effective manner, thus providing valuable insights into the physical processes of the deep Earth. This thesis focusses on the system Mg-Fe-O, specifically on the optical properties of periclase (MgO) and its iron-bearing variant ferropericlase ((Mg,Fe)O), forming a major planetary building block. The primary objective is to establish links between physical material properties and optical properties. In particular the spin transition in ferropericlase, the second-most abundant phase of the lower mantle, is known to change the physical material properties. Although the spin transition region likely extends down to the core-mantle boundary, the ef-fects of the mixed-spin state, where both high- and low-spin state are present, remains poorly constrained. In the studies presented herein, we show how optical properties are linked to physical properties such as electrical conductivity, radiative thermal conductivity and viscosity. We also show how the optical properties reveal changes in the chemical bonding. Furthermore, we unveil how the chemical bonding, the optical and other physical properties are affected by the iron spin transition. We find opposing trends in the pres-sure dependence of the refractive index of MgO and (Mg,Fe)O. From 1 atm to ~140 GPa, the refractive index of MgO decreases by ~2.4\% from 1.737 to 1.696 (±0.017). In contrast, the refractive index of (Mg0.87Fe0.13)O (Fp13) and (Mg0.76Fe0.24)O (Fp24) ferropericlase increases with pressure, likely because Fe Fe interactions between adjacent iron sites hinder a strong decrease of polarizability, as it is observed with increasing density in the case of pure MgO. An analysis of the index dispersion in MgO (decreasing by ~23\% from 1 atm to ~103 GPa) reflects a widening of the band gap from ~7.4 eV at 1 atm to ~8.5 (±0.6) eV at ~103 GPa. The index dispersion (between 550 and 870 nm) of Fp13 reveals a decrease by a factor of ~3 over the spin transition range (~44-100 GPa). We show that the electrical band gap of ferropericlase significantly widens up to ~4.7 eV in the mixed spin region, equivalent to an increase by a factor of ~1.7. We propose that this is due to a lower electron mobility between adjacent Fe2+ sites of opposite spin, explaining the previously observed low electrical conductivity in the mixed spin region. From the study of absorbance spectra in Fp13, we show an increasing covalency of the Fe-O bond with pressure for high-spin ferropericlase, whereas in the low-spin state a trend to a more ionic nature of the Fe-O bond is observed, indicating a bond weakening effect of the spin transition. We found that the spin transition is ultimately caused by both an increase of the ligand field-splitting energy and a decreasing spin-pairing energy of high-spin Fe2+.}, language = {en} } @phdthesis{Sharma2023, author = {Sharma, Anjali}, title = {Optical manipulation of multi-responsive microgels}, school = {Universit{\"a}t Potsdam}, pages = {207}, year = {2023}, abstract = {This dissertation focuses on the understanding of the optical manipulation of microgels dispersed in aqueous solution of azobenzene containing surfactant. The work consists of three parts where each part is a systematic investigation of the (1) photo-isomerization kinetics of the surfactant in complex with the microgel polymer matrix, (2) light driven diffusiosmosis (LDDO) in microgels and (3) photo-responsivity of microgel on complexation with spiropyran. The first part comprises three publications where the first one [P1] investigates the photo-isomerization kinetics and corresponding isomer composition at a photo-stationary state of the photo-sensitive surfactant conjugated with charged polymers or micro sized polymer networks to understand the structural response of such photo-sensitive complexes. We report that the photo-isomerization of the azobenzene-containing cationic surfactant is slower in a polymer complex compared to being purely dissolved in an aqueous solution. The surfactant aggregates near the polyelectrolyte chains at concentrations much lower than the bulk critical micelle concentration. This, along with the inhibition of the photo-isomerization kinetics due to steric hindrance within the densely packed aggregates, pushes the isomer-ratio to a higher trans-isomer concentration for all irradiation wavelengths. The second publication [P2] combines experimental results and non-adiabatic dynamic simulations for the same surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the slowdown in photo induced trans → cis azobenzene isomerization at concentrations higher than the critical micelle concentration (CMC). The simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles and observes a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans → cis switching in micelles of the azobenzene-containing surfactants. Finally, the third publication [P3] focusses on the kinetics of adsorption and desorption of the same surfactant within anionic microgels in the dark and under continuous irradiation. Experimental data demonstrate, that microgels can serve as a selective absorber of the trans isomers. The interaction of the isomers with the gel matrix induces a remotely controllable collapse or swelling on appropriate irradiation wavelengths. Measuring the kinetics of the microgel size response and knowing the exact isomer composition under light exposure, we calculate the adsorption rate of the trans-isomers. The second part comprises two publications. The first publication [P4] reports on the phenomenon of light-driven diffusioosmotic (DO) long-range attractive and repulsive interactions between micro-sized objects, whose range extends several times the size of microparticles and can be adjusted to point towards or away from the particle by varying irradiation parameters such as intensity or wavelength of light. The phenomenon is fueled by the aforementioned photosensitive surfactant. The complex interaction of dynamic exchange of isomers and photo-isomerization rate yields to relative concentrations gradients of the isomers in the vicinity of micro-sized object inducing a local diffusioosmotic (DO) flow thereby making a surface act as a micropump. The second publication [P5] exclusively aims the visualization and investigation of the DO flows generated from microgels by using small tracer particles. Similar to micro sized objects, the flow is able to push adjacent tracers over distances several times larger than microgel size. Here we report that the direction and the strength of the l-LDDO depends on the intensity, irradiation wavelength and the amount of surfactant adsorbed by the microgel. For example, the flow pattern around a microgel is directed radially outward and can be maintained quasi-indefinitely under exposure at 455 nm when the trans:cis ratio is 2:1, whereas irradiation at 365 nm, generates a radially transient flow pattern, which inverts at lower intensities. Lastly, the third part consists of one publication [P6] which, unlike the previous works, reports on the study of the kinetics of photo- and thermo-switching of a new surfactant namely, spiropyran, upon exposure with light of different wavelengths and its interaction with p(NIPAM-AA) microgels. The surfactant being an amphiphile, switches between its ring closed spiropyran (SP) form and ring open merocyanine (MC) form which results in a change in the hydrophilic-hydrophobic balance of the surfactant as MC being a zwitterionic form along with the charged head group, generates three charges on the molecule. Therefore, the MC form of the surfactant is more hydrophilic than in the case of the neutral SP state. Here, we investigate the initial shrinkage of the gel particles via charge compensation on first exposure to SP molecules which results from the complex formation of the molecules with the gel matrix, triggering them to become photo responsive. The size and VPTT of the microgels during irradiation is shown to be a combination of heating up of the solution during light absorption by the surfactant (more pronounced in the case of UV irradiation) and the change in the hydrophobicity of the surfactant.}, language = {en} } @phdthesis{Haubitz2021, author = {Haubitz, Toni}, title = {Transient absorption spectroscopy}, doi = {10.25932/publishup-53509}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535092}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 176}, year = {2021}, abstract = {The optical properties of chromophores, especially organic dyes and optically active inorganic molecules, are determined by their chemical structures, surrounding media, and excited state behaviors. The classical optical go-to techniques for spectroscopic investigations are absorption and luminescence spectroscopy. While both techniques are powerful and easy to apply spectroscopic methods, the limited time resolution of luminescence spectroscopy and its reliance on luminescent properties can make its application, in certain cases, complex, or even impossible. This can be the case when the investigated molecules do not luminesce anymore due to quenching effects, or when they were never luminescent in the first place. In those cases, transient absorption spectroscopy is an excellent and much more sophisticated technique to investigate such systems. This pump-probe laser-spectroscopic method is excellent for mechanistic investigations of luminescence quenching phenomena and photoreactions. This is due to its extremely high time resolution in the femto- and picosecond ranges, where many intermediate or transient species of a reaction can be identified and their kinetic evolution can be observed. Furthermore, it does not rely on the samples being luminescent, due to the active sample probing after excitation. In this work it is shown, that with transient absorption spectroscopy it was possible to identify the luminescence quenching mechanisms and thus luminescence quantum yield losses of the organic dye classes O4-DBD, S4-DBD, and pyridylanthracenes. Hence, the population of their triplet states could be identified as the competitive mechanism to their luminescence. While the good luminophores O4-DBD showed minor losses, the S4-DBD dye luminescence was almost entirely quenched by this process. However, for pyridylanthracenes, this phenomenon is present in both the protonated and unprotonated forms and moderately effects the luminescence quantum yield. Also, the majority of the quenching losses in the protonated forms are caused by additional non-radiative processes introduced by the protonation of the pyridyl rings. Furthermore, transient absorption spectroscopy can be applied to investigate the quenching mechanisms of uranyl(VI) luminescence by chloride and bromide. The reduction of the halides by excited uranyl(VI) leads to the formation of dihalide radicals X^(·-2). This excited state redox process is thus identified as the quenching mechanism for both halides, and this process, being diffusion-limited, can be suppressed by cryogenically freezing the samples or by observing these interactions in media with a lower dielectric constant, such as ACN and acetone.}, language = {en} } @phdthesis{Fritzewski2021, author = {Fritzewski, Dario Jasper}, title = {From fast to slow rotation in the open clusters NGC 2516 and NGC 3532}, doi = {10.25932/publishup-53135}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-531356}, school = {Universit{\"a}t Potsdam}, pages = {viii, 137}, year = {2021}, abstract = {Angular momentum is a particularly sensitive probe into stellar evolution because it changes significantly over the main sequence life of a star. In this thesis, I focus on young main sequence stars of which some feature a rapid evolution in their rotation rates. This transition from fast to slow rotation is inadequately explored observationally and this work aims to provide insights into the properties and time scales but also investigates stellar rotation in young open clusters in general. I focus on the two open clusters NGC 2516 and NGC 3532 which are ~150 Myr (zero-age main sequence age) and ~300 Myr old, respectively. From 42 d-long time series photometry obtained at the Cerro Tololo Inter-American Observatory, I determine stellar rotation periods in both clusters. With accompanying low resolution spectroscopy, I measure radial velocities and chromospheric emission for NGC 3532, the former to establish a clean membership and the latter to probe the rotation-activity connection. The rotation period distribution derived for NGC 2516 is identical to that of four other coeval open clusters, including the Pleiades, which shows the universality of stellar rotation at the zero-age main sequence. Among the similarities (with the Pleiades) the "extended slow rotator sequence" is a new, universal, yet sparse, feature in the colour-period diagrams of open clusters. From a membership study, I find NGC 3532 to be one of the richest nearby open clusters with 660 confirmed radial velocity members and to be slightly sub-solar in metallicity. The stellar rotation periods for NGC 3532 are the first published for a 300 Myr-old open cluster, a key age to understand the transition from fast to slow rotation. The fast rotators at this age have significantly evolved beyond what is observed in NGC 2516 which allows to estimate the spin-down timescale and to explore the issues that angular momentum models have in describing this transition. The transitional sequence is also clearly identified in a colour-activity diagram of stars in NGC 3532. The synergies of the chromospheric activity and the rotation periods allow to understand the colour-activity-rotation connection for NGC 3532 in unprecedented detail and to estimate additional rotation periods for members of NGC 3532, including stars on the "extended slow rotator sequence". In conclusion, this thesis probes the transition from fast to slow rotation but has also more general implications for the angular momentum evolution of young open clusters.}, language = {en} } @phdthesis{Krstulovic2021, author = {Krstulovic, Marija}, title = {Local structure of network formers and network modifiers in silicate melts at high pressure and temperature conditions}, doi = {10.25932/publishup-51641}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516415}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2021}, abstract = {Silikatische Schmelzen sind wichtiger Bestandteil des Erdinneren und als solche leisten sie in magmatischen Prozessen einen wesentlichen Beitrag in der Dynamik der festen Erde und der chemischen Entwicklung des gesamten Erdk{\"o}pers. Makroskopische physikalische und chemische Eigenschaften wie Dichte, Kompressibilit{\"a}t, Viskosit{\"a}t, Polymerisationsgrad etc. sind durch die atomare Struktur der Schmelzen bestimmt. In Abh{\"a}ngigkeit vom Druck, aber auch von der Temperatur und der chemischen Zusammensetzung zeigen silikatische Schmelzen unterschiedliche strukturelle Eigenschaften. Diese Eigenschaften sind am besten durch die lokale Koordinationsumgebung, d.h. Symmetrie und Anzahl der Nachbarn (Koordinationszahl) eines Atoms, sowie dem Abstand zwischen Zentralatom und Nachbarn (atomarer Abstand) beschrieben. Mit steigendem Druck und Temperatur, das heißt mit der zunehmenden Tiefe in der Erde, nimmt die Dichte der Schmelzen zu, welches zur Ver{\"a}nderung von Koordinationszahl und Abst{\"a}nden f{\"u}hren kann. Bei gleichbleibender Koordinationszahl nimmt der Abstand in der Regel zu. Kommt es zu Erh{\"o}hung der Koordinationszahl kann der Abstand zunehmen. Diese allgemeinen Trends k{\"o}nnen allerdings stark variieren, welches insbesondere auf die chemische Zusammensetzung zur{\"u}ckzuf{\"u}hren ist. Dadurch, dass nat{\"u}rliche Schmelzen der tiefen Erde f{\"u}r direkte Untersuchungen nicht zug{\"a}nglich sind, um ihre Eigenschaften unter den relevanten Bedingungen zu verstehen, wurden umfangreiche experimentelle und theoretische Untersuchungen bisher durchgef{\"u}hrt. Dies wurde h{\"a}ufig am Beispiel von amorphen Proben der Endglieder SiO2, und GeO2 studiert, wobei letzteres als strukturelles und chemisches Analogmodell zu SiO2 dient. Meistens wurden die Experimente bei hohem Druck und bei Raumtemperatur durchgef{\"u}hrt. Nat{\"u}rliche Schmelzen sind chemisch deutlich komplexer als die einfachen Endglieder SiO2 und GeO2, so dass die Beobachtungen an diesen m{\"o}glicherweise zu falschen Verdichtungsmodellen f{\"u}hren k{\"o}nnen. Weiterhin k{\"o}nnen die Untersuchungen an Gl{\"a}sern bei Raumtemperatur potentiell starke Abweichungen zu Eigenschaften von Schmelzen bei nat{\"u}rlichen thermodynamischen Bedingungen aufweisen. Das Ziel dieser Dissertation war es zu erl{\"a}utern, welchen Einfluss die Zusammensetzung und die Temperatur auf die strukturelle Eigenschaften der Schmelzen unter hohen Dr{\"u}cken haben. Um das zu verstehen, haben wir komplexe alumino-germanatische und alumino-silikatische Gl{\"a}ser studiert. Genauer gesagt, wir haben synthetische Gl{\"a}ser studiert, die eine Zusammensetzung wie das Mineral Albit und wie eine Mischung von Albit-Diopsid im eutektischen Punkt haben. Das Albitglas {\"a}hnelt strukturell einer vereinfachten granitischen Schmelze, w{\"a}hrend das Albit-Diopsid-Glas eine vereinfachte basaltische Schmelze simuliert. Um die lokale Koordinationsumgebung der Elemente zu studieren, haben wir die R{\"o}ntgenabsorptionsspektroskopie in Kombination mit einer Diamantstempelzelle benutzt. Dadurch, dass die Diamanten eine hohe Absorption f{\"u}r R{\"o}ntgenstrahlung mit Energien unterhalb von 10 keV aufweisen, ist die unmittelbare Untersuchung der geologisch sehr relevanten Elemente wie Si, Al, Ca, Mg etc. mit dieser Spektroskopie in Kombination mit einer Diamantstempelzelle nicht m{\"o}glich. Deswegen wurden die Gl{\"a}ser mit Ge und Sr dotiert. Diese Elemente dienen teilweise oder vollst{\"a}ndig als Ersatzelemente f{\"u}r wichtige Hauptelemente. In diesem Sinne, dient Ge als Ersatzelement f{\"u}r Si und andere Netzwerkbildner, w{\"a}hrend Sr Netzwerkwandler wie Z.B. Ca, Na, Mg etc., sowie andere Kationen mit großem Ionenradius ersetzt. Im ersten Schritt haben wir die Ge K-Kante im Ge-Albit-Glass, NaAlGe3O8, bei Raumtemperatur bis 131 GPa untersucht. Dieses Glas hat eine h{\"o}here chemische Komplexit{\"a}t als SiO2 und GeO2, aber es ist immer noch vollst{\"a}ndig polymerisiert. Die Unterschiede im Verdichtungsmechanismus zwischen diesem Glas und den einfachen Oxiden k{\"o}nnen so eindeutig auf h{\"o}here chemische Komplexit{\"a}t zur{\"u}ckgef{\"u}hrt werden. Die partiell mit Ge und Sr dotierten Albit und Albit-Diopsid-Zusammensetzungen wurden bei Raumtemperatur f{\"u}r Ge bis 164 GPa und f{\"u}r Sr bis 42 GPa untersucht. W{\"a}hrend das Albitglass wie NaAlGe3O8 nominelll vollst{\"a}ndig polymerisiert ist, ist das Albit-Diopsid Glas teilweise depolymerisiert. Die Ergebnisse zeigen, dass in allen drei Gl{\"a}sern strukturelle An̈derungen in den ersten 25 bis maximal 30 GPa stattfinden, wobei beide Ge und Sr die maximale Koordinationszahl 6 bzw. ∼9 erreichen. Bei h{\"o}heren Dr{\"u}cken findet in den Gl{\"a}sern nur eine isostrukturelle Schrumpfung der Koordinationspolyeder statt. Der wichtigste Befund der Hochdruckstudien an den alumino-silikatischen und alumino-germanatischen Gl{\"a}sern ist, dass in diesen komplexen Gl{\"a}sern die Polyeder eine viel h{\"o}here Kompressibilit{\"a}t aufweisen als bei den Endgliedern zu beobachten. Das zeigt sich insbesondere durch die starke Verk{\"u}rzung der Ge-O Abst{\"a}nde in dem amorphen NaAlGe3O8 und Albit-Diopsid-Glas bei Dr{\"u}cken {\"u}ber 30 GPa. Zus{\"a}tzlich zu den Effekten der Zusammensetzung auf den Verdichtungsprozess, haben wir den Einfluss der Temperatur auf die strukturelle {\"A}nderungen untersucht. Dazu haben wir das Albit-Diopsid-Glas untersucht, da es den Schmelzen im unteren Mantel chemisch am {\"a}hnlichsten ist. Wir haben die Ge K-Kante der Probe mit einer resistiv-geheizten und einer Laser-geheizter Diamantstempelzelle untersucht, f{\"u}r einen Druckbereich bis zu 48 GPa, sowie einen Temperaturbereich bis 5000 K. Hohe Temperaturen, bei denen die Probe fl{\"u}ssig ist und die f{\"u}r den Erdmantel relevant sind, haben einen bedeutenden Einfluss auf die strukturelle Transformation. Diese wird um ca. 30\% zu deutlich niedrigeren Dr{\"u}cken verschoben, im Vergleich zu den Gl{\"a}sern bei Raumtemperatur und unterhalb von 1000 K. Die Ergebnisse dieser Dissertation stellen einen wichtigen Beitrag fur das Verst{\"a}ndnis der Eigenschaften von Schmelzen unter Bedingungen des unteren Mantels dar. Im Kontext der Diskussion {\"u}ber die Existenz und den Ursprung von silikatischen Schmelzen mit ultrahoher Dichte, welche an der Grenze zwischen Mantel und Erdkern aufgrund seismologischer Daten vermutet werden, zeigen diese Untersuchugen, dass die im Vergleich zur Umgebung h{\"o}here Dichte nicht durch strukturelle Besonderheiten, sondern durch eine besondere chemische Zusammensetzung erkl{\"a}rt werden m{\"u}ssen. Außerdem legen die Ergebnisse nahe, dass f{\"u}r Schmelzen im unteren Erdmantel nur sehr geringe L{\"o}slichkeiten von Edelgasen zu erwarten sind, so dass die strukturellen Eigenschaften deutlich den Gesamthaushalt und Transport der Edelgase im Erdmantel beeinflussen.}, language = {en} } @phdthesis{Ramachandran2019, author = {Ramachandran, Varsha}, title = {Massive star evolution, star formation, and feedback at low metallicity}, doi = {10.25932/publishup-43245}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432455}, school = {Universit{\"a}t Potsdam}, pages = {291}, year = {2019}, abstract = {The goal of this thesis is to broaden the empirical basis for a better, comprehensive understanding of massive star evolution, star formation and feedback at low metallicity. Low metallicity massive stars are a key to understand the early universe. Quantitative information on metal-poor massive stars was sparse before. The quantitative spectroscopic studies of massive star populations associated with large-scale ISM structures were not performed at low metallicity before, but are important to investigate star-formation histories and feedback in detail. Much of this work relies on spectroscopic observations with VLT-FLAMES of ~500 OB stars in the Magellanic Clouds. When available, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. The two representative young stellar populations that have been studied are associated with the superbubble N 206 in the Large Magellanic Cloud (LMC) and with the supergiant shell SMC-SGS 1 in the Wing of the Small Magellanic Cloud (SMC), respectively. We performed spectroscopic analyses of the massive stars using the nonLTE Potsdam Wolf-Rayet (PoWR) model atmosphere code. We estimated the stellar, wind, and feedback parameters of the individual massive stars and established their statistical distributions. The mass-loss rates of N206 OB stars are consistent with theoretical expectations for LMC metallicity. The most massive and youngest stars show nitrogen enrichment at their surface and are found to be slower rotators than the rest of the sample. The N 206 complex has undergone star formation episodes since more than 30 Myr, with a current star formation rate higher than average in the LMC. The spatial age distribution of stars across the complex possibly indicates triggered star formation due to the expansion of the superbubble. Three very massive, young Of stars in the region dominate the ionizing and mechanical feedback among hundreds of other OB stars in the sample. The current stellar wind feedback rate from the two WR stars in the complex is comparable to that released by the whole OB sample. We see only a minor fraction of this stellar wind feedback converted into X-ray emission. In this LMC complex, stellar winds and supernovae equally contribute to the total energy feedback, which eventually powered the central superbubble. However, the total energy input accumulated over the time scale of the superbubble significantly exceeds the observed energy content of the complex. The lack of energy along with the morphology of the complex suggests a leakage of hot gas from the superbubble. With a detailed spectroscopic study of massive stars in SMC-SGS 1, we provide the stellar and wind parameters of a large sample of OB stars at low metallicity, including those in the lower mass-range. The stellar rotation velocities show a broad, tentatively bimodal distribution, with Be stars being among the fastest. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below 30 solar masses seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, more massive stars appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales. Our study showcases the importance of quantitative spectroscopy of massive stars with adequate stellar-atmosphere models in order to understand star-formation, evolution, and feedback. The stellar population analyses in the LMC and SMC make us understand that massive stars and their impact can be very different depending on their environment. Obviously, due to their different metallicity, the massive stars in the LMC and the SMC follow different evolutionary paths. Their winds differ significantly, and the key feedback agents are different. As a consequence, the star formation can proceed in different modes.}, language = {en} } @phdthesis{Sablowski2019, author = {Sablowski, Daniel}, title = {Spectroscopic analysis of the benchmark system Alpha Aurigae}, doi = {10.25932/publishup-43239}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432396}, school = {Universit{\"a}t Potsdam}, pages = {169}, year = {2019}, abstract = {Binaries play an important role in observational and theoretical astrophysics. Since the mass and the chemical composition are key ingredients for stellar evolution, high-resolution spectroscopy is an important and necessary tool to derive those parameters to high confidence in binaries. This involves carefully measured orbital motion by the determination of radial velocity (RV) shifts and sophisticated techniques to derive the abundances of elements within the stellar atmosphere. A technique superior to conventional cross-correlation methods to determine RV shifts in known as spectral disentangling. Hence, a major task of this thesis was the design of a sophisticated software package for this approach. In order to investigate secondary effects, such as flux and line-profile variations, imprinting changes on the spectrum the behavior of spectral disentangling on such variability is a key to understand the derived values, to improve them, and to get information about the variability itself. Therefore, the spectral disentangling code presented in this thesis and available to the community combines multiple advantages: separation of the spectra for detailed chemical analysis, derivation of orbital elements, derivation of individual RVs in order to investigate distorted systems (either by third body interaction or relativistic effects), the suppression of telluric contaminations, the derivation of variability, and the possibility to apply the technique to eclipsing binaries (important for orbital inclination) or in general to systems that undergo flux-variations. This code in combination with the spectral synthesis codes MOOG and SME was used in order to derive the carbon 12C/13C isotope ratio (CIR) of the benchmark binary Capella. The observational result will be set into context with theoretical evolution by the use of MESA models and resolves the discrepancy of theory and observations existing since the first measurement of Capella's CIR in 1976. The spectral disentangling code has been made available to the community and its applicability to completely different behaving systems, Wolf-Rayet stars, have also been investigated and resulted in a published article. Additionally, since this technique relies strongly on data quality, continues development of scientific instruments to achieve best observational data is of great importance in observational astrophysics. That is the reason why there has also been effort in astronomical instrumentation during the work on this thesis.}, language = {en} } @phdthesis{Anders2017, author = {Anders, Friedrich}, title = {Disentangling the chemodynamical history of the Milky Way disc with asteroseismology and spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396681}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2017}, abstract = {Galaxies are among the most complex systems that can currently be modelled with a computer. A realistic simulation must take into account cosmology and gravitation as well as effects of plasma, nuclear, and particle physics that occur on very different time, length, and energy scales. The Milky Way is the ideal test bench for such simulations, because we can observe millions of its individual stars whose kinematics and chemical composition are records of the evolution of our Galaxy. Thanks to the advent of multi-object spectroscopic surveys, we can systematically study stellar populations in a much larger volume of the Milky Way. While the wealth of new data will certainly revolutionise our picture of the formation and evolution of our Galaxy and galaxies in general, the big-data era of Galactic astronomy also confronts us with new observational, theoretical, and computational challenges. This thesis aims at finding new observational constraints to test Milky-Way models, primarily based on infra-red spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and asteroseismic data from the CoRoT mission. We compare our findings with chemical-evolution models and more sophisticated chemodynamical simulations. In particular we use the new powerful technique of combining asteroseismic and spectroscopic observations that allows us to test the time dimension of such models for the first time. With CoRoT and APOGEE (CoRoGEE) we can infer much more precise ages for distant field red-giant stars, opening up a new window for Galactic archaeology. Another important aspect of this work is the forward-simulation approach that we pursued when interpreting these complex datasets and comparing them to chemodynamical models. The first part of the thesis contains the first chemodynamical study conducted with the APOGEE survey. Our sample comprises more than 20,000 red-giant stars located within 6 kpc from the Sun, and thus greatly enlarges the Galactic volume covered with high-resolution spectroscopic observations. Because APOGEE is much less affected by interstellar dust extinction, the sample covers the disc regions very close to the Galactic plane that are typically avoided by optical surveys. This allows us to investigate the chemo-kinematic properties of the Milky Way's thin disc outside the solar vicinity. We measure, for the first time with high-resolution data, the radial metallicity gradient of the disc as a function of distance from the Galactic plane, demonstrating that the gradient flattens and even changes its sign for mid-plane distances greater than 1 kpc. Furthermore, we detect a gap between the high- and low-[\$\alpha\$/Fe] sequences in the chemical-abundance diagram (associated with the thin and thick disc) that unlike in previous surveys can hardly be explained by selection effects. Using 6D kinematic information, we also present chemical-abundance diagrams cleaned from stars on kinematically hot orbits. The data allow us to confirm without doubt that the scale length of the (chemically-defined) thick disc is significantly shorter than that of the thin disc. In the second part, we present our results of the first combination of asteroseismic and spectroscopic data in the context of Galactic Archaeology. We analyse APOGEE follow-up observations of 606 solar-like oscillating red giants in two CoRoT fields close to the Galactic plane. These stars cover a large radial range of the Galactic disc (4.5 kpc \$\lesssim R_{\rm Gal}\lesssim15\$ kpc) and a large age baseline (0.5 Gyr \$\lesssim \tau\lesssim\$ 13 Gyr), allowing us to study the age- and radius-dependence of the [\$\alpha\$/Fe] vs. [Fe/H] distributions. We find that the age distribution of the high-[\$\alpha\$/Fe] sequence appears to be broader than expected from a monolithically-formed old thick disc that stopped to form stars 10 Gyr ago. In particular, we discover a significant population of apparently young, [\$\alpha\$/Fe]-rich stars in the CoRoGEE data whose existence cannot be explained by standard chemical-evolution models. These peculiar stars are much more abundant in the inner CoRoT field LRc01 than in the outer-disc field LRc01, suggesting that at least part of this population has a chemical-evolution rather than a stellar-evolution origin, possibly due to a peculiar chemical-enrichment history of the inner disc. We also find that strong radial migration is needed to explain the abundance of super-metal-rich stars in the outer disc. Finally, we use the CoRoGEE sample to study the time evolution of the radial metallicity gradient in the thin disc, an observable that has been the subject of observational and theoretical debate for more than 20 years. By dividing the CoRoGEE dataset into six age bins, performing a careful statistical analysis of the radial [Fe/H], [O/H], and [Mg/Fe] distributions, and accounting for the biases introduced by the observation strategy, we obtain reliable gradient measurements. The slope of the radial [Fe/H] gradient of the young red-giant population (\$-0.058\pm0.008\$ [stat.] \$\pm0.003\$ [syst.] dex/kpc) is consistent with recent Cepheid data. For the age range of \$1-4\$ Gyr, the gradient steepens slightly (\$-0.066\pm0.007\pm0.002\$ dex/kpc), before flattening again to reach a value of \$\sim-0.03\$ dex/kpc for stars with ages between 6 and 10 Gyr. This age dependence of the [Fe/H] gradient can be explained by a nearly constant negative [Fe/H] gradient of \$\sim-0.07\$ dex/kpc in the interstellar medium over the past 10 Gyr, together with stellar heating and migration. Radial migration also offers a new explanation for the puzzling observation that intermediate-age open clusters in the solar vicinity (unlike field stars) tend to have higher metallicities than their younger counterparts. We suggest that non-migrating clusters are more likely to be kinematically disrupted, which creates a bias towards high-metallicity migrators from the inner disc and may even steepen the intermediate-age cluster abundance gradient.}, language = {en} } @phdthesis{Brosinsky2015, author = {Brosinsky, Arlena}, title = {Spectral fingerprinting}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-83369}, school = {Universit{\"a}t Potsdam}, pages = {VI, 117}, year = {2015}, abstract = {Current research on runoff and erosion processes, as well as an increasing demand for sustainable watershed management emphasize the need for an improved understanding of sediment dynamics. This involves the accurate assessment of erosion rates and sediment transfer, yield and origin. A variety of methods exist to capture these processes at the catchment scale. Among these, sediment fingerprinting, a technique to trace back the origin of sediment, has attracted increasing attention by the scientific community in recent years. It is a two-step procedure, based on the fundamental assumptions that potential sources of sediment can be reliably discriminated based on a set of characteristic 'fingerprint' properties, and that a comparison of source and sediment fingerprints allows to quantify the relative contribution of each source. This thesis aims at further assessing the potential of spectroscopy to assist and improve the sediment fingerprinting technique. Specifically, this work focuses on (1) whether potential sediment sources can be reliably identified based on spectral features ('fingerprints'), whether (2) these spectral fingerprints permit the quantification of relative source contribution, and whether (3) in situ derived source information is sufficient for this purpose. Furthermore, sediment fingerprinting using spectral information is applied in a study catchment to (4) identify major sources and observe how relative source contributions change between and within individual flood events. And finally, (5) spectral fingerprinting results are compared and combined with simultaneous sediment flux measurements to study sediment origin, transport and storage behaviour. For the sediment fingerprinting approach, soil samples were collected from potential sediment sources within the Is{\´a}bena catchment, a meso-scale basin in the central Spanish Pyrenees. Undisturbed samples of the upper soil layer were measured in situ using an ASD spectroradiometer and subsequently sampled for measurements in the laboratory. Suspended sediment was sampled automatically by means of ISCO samplers at the catchment as well as at the five major subcatchment outlets during flood events, and stored fine sediment from the channel bed was collected from 14 cross-sections along the main river. Artificial mixtures of known contributions were produced from source soil samples. Then, all source, sediment and mixture samples were dried and spectrally measured in the laboratory. Subsequently, colour coefficients and physically based features with relation to organic carbon, iron oxide, clay content and carbonate, were calculated from all in situ and laboratory spectra. Spectral parameters passing a number of prerequisite tests were submitted to principal component analyses to study natural clustering of samples, discriminant function analyses to observe source differentiation accuracy, and a mixing model for source contribution assessment. In addition, annual as well as flood event based suspended sediment fluxes from the catchment and its subcatchments were calculated from rainfall, water discharge and suspended sediment concentration measurements using rating curves and Quantile Regression Forests. Results of sediment flux monitoring were interpreted individually with respect to storage behaviour, compared to fingerprinting source ascriptions and combined with fingerprinting to assess their joint explanatory potential. In response to the key questions of this work, (1) three source types (land use) and five spatial sources (subcatchments) could be reliably discriminated based on spectral fingerprints. The artificial mixture experiment revealed that while (2) laboratory parameters permitted source contribution assessment, (3) the use of in situ derived information was insufficient. Apparently, high discrimination accuracy does not necessarily imply good quantification results. When applied to suspended sediment samples of the catchment outlet, the spectral fingerprinting approach was able to (4) quantify the major sediment sources: badlands and the Villacarli subcatchment, respectively, were identified as main contributors, which is consistent with field observations and previous studies. Thereby, source contribution was found to vary both, within and between individual flood events. Also sediment flux was found to vary considerably, annually as well as seasonally and on flood event base. Storage was confirmed to play an important role in the sediment dynamics of the studied catchment, whereas floods with lower total sediment yield tend to deposit and floods with higher yield rather remove material from the channel bed. Finally, a comparison of flux measurements with fingerprinting results highlighted the fact that (5) immediate transport from sources to the catchment outlet cannot be assumed. A combination of the two methods revealed different aspects of sediment dynamics that none of the techniques could have uncovered individually. In summary, spectral properties provide a fast, non-destructive, and cost-efficient means to discriminate and quantify sediment sources, whereas, unfortunately, straight-forward in situ collected source information is insufficient for the approach. Mixture modelling using artificial mixtures permits valuable insights into the capabilities and limitations of the method and similar experiments are strongly recommended to be performed in the future. Furthermore, a combination of techniques such as e.g. (spectral) sediment fingerprinting and sediment flux monitoring can provide comprehensive understanding of sediment dynamics.}, language = {en} }