@phdthesis{Saretia2021, author = {Saretia, Shivam}, title = {Modulating ultrathin films of semi-crystalline oligomers by Langmuir technique}, doi = {10.25932/publishup-54210}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542108}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 109}, year = {2021}, abstract = {Polymeric films and coatings derived from semi-crystalline oligomers are of relevance for medical and pharmaceutical applications. In this context, the material surface is of particular importance, as it mediates the interaction with the biological system. Two dimensional (2D) systems and ultrathin films are used to model this interface. However, conventional techniques for their preparation, such as spin coating or dip coating, have disadvantages, since the morphology and chain packing of the generated films can only be controlled to a limited extent and adsorption on the substrate used affects the behavior of the films. Detaching and transferring the films prepared by such techniques requires additional sacrificial or supporting layers, and free-standing or self supporting domains are usually of very limited lateral extension. The aim of this thesis is to study and modulate crystallization, melting, degradation and chemical reactions in ultrathin films of oligo(ε-caprolactone)s (OCL)s with different end-groups under ambient conditions. Here, oligomeric ultrathin films are assembled at the air-water interface using the Langmuir technique. The water surface allows lateral movement and aggregation of the oligomers, which, unlike solid substrates, enables dynamic physical and chemical interaction of the molecules. Parameters like surface pressure (π), temperature and mean molecular area (MMA) allow controlled assembly and manipulation of oligomer molecules when using the Langmuir technique. The π-MMA isotherms, Brewster angle microscopy (BAM), and interfacial infrared spectroscopy assist in detecting morphological and physicochemical changes in the film. Ultrathin films can be easily transferred to the solid silicon surface via Langmuir Schaefer (LS) method (horizontal substrate dipping). Here, the films transferred on silicon are investigated using atomic force microscopy (AFM) and optical microscopy and are compared to the films on the water surface. The semi-crystalline morphology (lamellar thicknesses, crystal number densities, and lateral crystal dimensions) is tuned by the chemical structure of the OCL end-groups (hydroxy or methacrylate) and by the crystallization temperature (Tc; 12 or 21 °C) or MMAs. Compression to lower MMA of ~2 {\AA}2, results in the formation of a highly crystalline film, which consists of tightly packed single crystals. Preparation of tightly packed single crystals on a cm2 scale is not possible by conventional techniques. Upon transfer to a solid surface, these films retain their crystalline morphology whereas amorphous films undergo dewetting. The melting temperature (Tm) of OCL single crystals at the water and the solid surface is found proportional to the inverse crystal thickness and is generally lower than the Tm of bulk PCL. The impact of OCL end-groups on melting behavior is most noticeable at the air-solid interface, where the methacrylate end-capped OCL (OCDME) melted at lower temperatures than the hydroxy end-capped OCL (OCDOL). When comparing the underlying substrate, melting/recrystallization of OCL ultrathin films is possible at lower temperatures at the air water interface than at the air-solid interface, where recrystallization is not visible. Recrystallization at the air-water interface usually occurs at a higher temperature than the initial Tc. Controlled degradation is crucial for the predictable performance of degradable polymeric biomaterials. Degradation of ultrathin films is carried out under acidic (pH ~ 1) or enzymatic catalysis (lipase from Pseudomonas cepcia) on the water surface or on a silicon surface as transferred films. A high crystallinity strongly reduces the hydrolytic but not the enzymatic degradation rate. As an influence of end-groups, the methacrylate end-capped linear oligomer, OCDME (~85 ± 2 \% end-group functionalization) hydrolytically degrades faster than the hydroxy end capped linear oligomer, OCDOL (~95 ± 3 \% end-group functionalization) at different temperatures. Differences in the acceleration of hydrolytic degradation of semi-crystalline films were observed upon complete melting, partial melting of the crystals, or by heating to temperatures close to Tm. Therefore, films of densely packed single crystals are suitable as barrier layers with thermally switchable degradation rates. Chemical modification in ultrathin films is an intricate process applicable to connect functionalized molecules, impart stability or create stimuli-sensitive cross-links. The reaction of end-groups is explored for transferred single crystals on a solid surface or amorphous monolayer at the air-water interface. Bulky methacrylate end-groups are expelled to the crystal surface during chain-folded crystallization. The density of end-groups is inversely proportional to molecular weight and hence very pronounced for oligomers. The methacrylate end-groups at the crystal surface, which are present at high concentration, can be used for further chemical functionalization. This is demonstrated by fluorescence microscopy after reaction with fluorescein dimethacrylate. The thermoswitching behavior (melting and recrystallization) of fluorescein functionalized single crystals shows the temperature-dependent distribution of the chemically linked fluorescein moieties, which are accumulated on the surfaces of crystals, and homogeneously dispersed when the crystals are molten. In amorphous monolayers at the air-water interface, reversible cross-linking of hydroxy-terminated oligo(ε-caprolactone) monolayers using dialdehyde (glyoxal) lead to the formation of 2D networks. Pronounced contraction in the area occurred for 2D OCL films in dependence of surface pressure and time indicating the reaction progress. Cross linking inhibited crystallization and retarded enzymatic degradation of the OCL film. Altering the subphase pH to ~2 led to cleavage of the covalent acetal cross-links. Besides as model systems, these reversibly cross-linked films are applicable for drug delivery systems or cell substrates modulating adhesion at biointerfaces.}, language = {en} } @phdthesis{Gebauer2008, author = {Gebauer, Denis}, title = {A novel view on the early stage of crystallization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19818}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {This thesis provides a novel view on the early stage of crystallization utilizing calcium carbonate as a model system. Calcium carbonate is of great economical, scientific and ecological importance, because it is a major part of water hardness, the most abundant Biomineral and forms huge amounts of geological sediments thus binding large amounts of carbon dioxide. The primary experiments base on the evolution of supersaturation via slow addition of dilute calcium chloride solution into dilute carbonate buffer. The time-dependent measurement of the Ca2+ potential and concurrent pH = constant titration facilitate the calculation of the amount of calcium and carbonate ions bound in pre-nucleation stage clusters, which have never been detected experimentally so far, and in the new phase after nucleation, respectively. Analytical Ultracentrifugation independently proves the existence of pre-nucleation stage clusters, and shows that the clusters forming at pH = 9.00 have a proximately time-averaged size of altogether 70 calcium and carbonate ions. Both experiments show that pre-nucleation stage cluster formation can be described by means of equilibrium thermodynamics. Effectively, the cluster formation equilibrium is physico-chemically characterized by means of a multiple-binding equilibrium of calcium ions to a 'lattice' of carbonate ions. The evaluation gives GIBBS standard energy for the formation of calcium/carbonate ion pairs in clusters, which exhibits a maximal value of approximately 17.2 kJ mol^-1 at pH = 9.75 and relates to a minimal binding strength in clusters at this pH-value. Nucleated calcium carbonate particles are amorphous at first and subsequently become crystalline. At high binding strength in clusters, only calcite (the thermodynamically stable polymorph) is finally obtained, while with decreasing binding strength in clusters, vaterite (the thermodynamically least stable polymorph) and presumably aragonite (the thermodynamically intermediate stable polymorph) are obtained additionally. Concurrently, two different solubility products of nucleated amorphous calcium carbonate (ACC) are detected at low binding strength and high binding strength in clusters (ACC I 3.1EE-8 M^2, ACC II 3.8EE-8 M^2), respectively, indicating the precipitation of at least two different ACC species, while the clusters provide the precursor species of ACC. It is proximate that ACC I may relate to calcitic ACC -i.e. ACC exhibiting short range order similar to the long range order of calcite and that ACC II may relate to vateritic ACC, which will subsequently transform into the particular crystalline polymorph as discussed in the literature, respectively. Detailed analysis of nucleated particles forming at minimal binding strength in clusters (pH = 9.75) by means of SEM, TEM, WAXS and light microscopy shows that predominantly vaterite with traces of calcite forms. The crystalline particles of early stages are composed of nano-crystallites of approximately 5 to 10 nm size, respectively, which are aligned in high mutual order as in mesocrystals. The analyses of precipitation at pH = 9.75 in presence of additives -polyacrylic acid (pAA) as a model compound for scale inhibitors and peptides exhibiting calcium carbonate binding affinity as model compounds for crystal modifiers- shows that ACC I and ACC II are precipitated in parallel: pAA stabilizes ACC II particles against crystallization leading to their dissolution for the benefit of crystals that form from ACC I and exclusively calcite is finally obtained. Concurrently, the peptide additives analogously inhibit the formation of calcite and exclusively vaterite is finally obtained in case of one of the peptide additives. These findings show that classical nucleation theory is hardly applicable for the nucleation of calcium carbonate. The metastable system is stabilized remarkably due to cluster formation, while clusters forming by means of equilibrium thermodynamics are the nucleation relevant species and not ions. Most likely, the concept of cluster formation is a common phenomenon occurring during the precipitation of hardly soluble compounds as qualitatively shown for calcium oxalate and calcium phosphate. This finding is important for the fundamental understanding of crystallization and nucleation-inhibition and modification by additives with impact on materials of huge scientific and industrial importance as well as for better understanding of the mass transport in crystallization. It can provide a novel basis for simulation and modelling approaches. New mechanisms of scale formation in Bio- and Geomineralization and also in scale inhibition on the basis of the newly reported reaction channel need to be considered.}, language = {en} }