@phdthesis{WijesinghaAhchige2022, author = {Wijesingha Ahchige, Micha}, title = {Canalization of plant metabolism and yield}, doi = {10.25932/publishup-54884}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548844}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 160}, year = {2022}, abstract = {Plant metabolism is the main process of converting assimilated carbon to different crucial compounds for plant growth and therefore crop yield, which makes it an important research topic. Although major advances in understanding genetic principles contributing to metabolism and yield have been made, little is known about the genetics responsible for trait variation or canalization although the concepts have been known for a long time. In light of a growing global population and progressing climate change, understanding canalization of metabolism and yield seems ever-more important to ensure food security. Our group has recently found canalization metabolite quantitative trait loci (cmQTL) for tomato fruit metabolism, showing that the concept of canalization applies on metabolism. In this work two approaches to investigate plant metabolic canalization and one approach to investigate yield canalization are presented. In the first project, primary and secondary metabolic data from Arabidopsis thaliana and Phaseolus vulgaris leaf material, obtained from plants grown under different conditions was used to calculate cross-environment coefficient of variations or fold-changes of metabolite levels per genotype and used as input for genome wide association studies. While primary metabolites have lower CV across conditions and show few and mostly weak associations to genomic regions, secondary metabolites have higher CV and show more, strong metabolite to genome associations. As candidate genes, both potential regulatory genes as well as metabolic genes, can be found, albeit most metabolic genes are rarely directly related to the target metabolites, suggesting a role for both potential regulatory mechanisms as well as metabolic network structure for canalization of metabolism. In the second project, candidate genes of the Solanum lycopersicum cmQTL mapping are selected and CRISPR/Cas9-mediated gene-edited tomato lines are created, to validate the genes role in canalization of metabolism. Obtained mutants appeared to either have strong aberrant developmental phenotypes or appear wild type-like. One phenotypically inconspicuous mutant of a pantothenate kinase, selected as candidate for malic acid canalization shows a significant increase of CV across different watering conditions. Another such mutant of a protein putatively involved in amino acid transport, selected as candidate for phenylalanine canalization shows a similar tendency to increased CV without statistical significance. This potential role of two genes involved in metabolism supports the hypothesis of structural relevance of metabolism for its own stability. In the third project, a mutant for a putative disulfide isomerase, important for thylakoid biogenesis, is characterized by a multi-omics approach. The mutant was characterized previously in a yield stability screening and showed a variegated leaf phenotype, ranging from green leaves with wild type levels of chlorophyll over differently patterned variegated to completely white leaves almost completely devoid of photosynthetic pigments. White mutant leaves show wild type transcript levels of photosystem assembly factors, with the exception of ELIP and DEG orthologs indicating a stagnation at an etioplast to chloroplast transition state. Green mutant leaves show an upregulation of these assembly factors, possibly acting as overcompensation for partially defective disulfide isomerase, which seems sufficient for proper chloroplast development as confirmed by a wild type-like proteome. Likely as a result of this phenotype, a general stress response, a shift to a sink-like tissue and abnormal thylakoid membranes, strongly alter the metabolic profile of white mutant leaves. As the severity and pattern of variegation varies from plant to plant and may be effected by external factors, the effect on yield instability, may be a cause of a decanalized ability to fully exploit the whole leaf surface area for photosynthetic activity.}, language = {en} } @phdthesis{Schjeide2021, author = {Schjeide, Brit-Maren}, title = {Development and characterization of the MoN-Light BoNT assay to determine the toxicity of botulinum neurotoxin in motor neurons differentiated from CRISPR-modified induced pluripotent stem cells}, doi = {10.25932/publishup-51627}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516278}, school = {Universit{\"a}t Potsdam}, pages = {e, xviii, 265}, year = {2021}, abstract = {Botulinum neurotoxin (BoNT) is produced by the anaerobic bacterium Clostridium botulinum. It is one of the most potent toxins found in nature and can enter motor neurons (MN) to cleave proteins necessary for neurotransmission, resulting in flaccid paralysis. The toxin has applications in both traditional and esthetic medicine. Since BoNT activity varies between batches despite identical protein concentrations, the activity of each lot must be assessed. The gold standard method is the mouse lethality assay, in which mice are injected with a BoNT dilution series to determine the dose at which half of the animals suffer death from peripheral asphyxia. Ethical concerns surrounding the use of animals in toxicity testing necessitate the creation of alternative model systems to measure the potency of BoNT. Prerequisites of a successful model are that it is human specific; it monitors the complete toxic pathway of BoNT; and it is highly sensitive, at least in the range of the mouse lethality assay. One model system was developed by our group, in which human SIMA neuroblastoma cells were genetically modified to express a reporter protein (GLuc), which is packaged into neurosecretory vesicles, and which, upon cellular depolarization, can be released - or inhibited by BoNT - simultaneously with neurotransmitters. This assay has great potential, but includes the inherent disadvantages that the GLuc sequence was randomly inserted into the genome and the tumor cells only have limited sensitivity and specificity to BoNT. This project aims to improve these deficits, whereby induced pluripotent stem cells (iPSCs) were genetically modified by the CRISPR/Cas9 method to insert the GLuc sequence into the AAVS1 genomic safe harbor locus, precluding genetic disruption through non-specific integrations. Furthermore, GLuc was modified to associate with signal peptides that direct to the lumen of both large dense core vesicles (LDCV), which transport neuropeptides, and synaptic vesicles (SV), which package neurotransmitters. Finally, the modified iPSCs were differentiated into motor neurons (MNs), the true physiological target of BoNT, and hypothetically the most sensitive and specific cells available for the MoN-Light BoNT assay. iPSCs were transfected to incorporate one of three constructs to direct GLuc into LDCVs, one construct to direct GLuc into SVs, and one "no tag" GLuc control construct. The LDCV constructs fused GLuc with the signal peptides for proopiomelanocortin (hPOMC-GLuc), chromogranin-A (CgA-GLuc), and secretogranin II (SgII-GLuc), which are all proteins found in the LDCV lumen. The SV construct comprises a VAMP2-GLuc fusion sequence, exploiting the SV membrane-associated protein synaptobrevin (VAMP2). The no tag GLuc expresses GLuc non-specifically throughout the cell and was created to compare the localization of vesicle-directed GLuc. The clones were characterized to ensure that the GLuc sequence was only incorporated into the AAVS1 safe harbor locus and that the signal peptides directed GLuc to the correct vesicles. The accurate insertion of GLuc was confirmed by PCR with primers flanking the AAVS1 safe harbor locus, capable of simultaneously amplifying wildtype and modified alleles. The PCR amplicons, along with an insert-specific amplicon from candidate clones were Sanger sequenced to confirm the correct genomic region and sequence of the inserted DNA. Off-target integrations were analyzed with the newly developed dc-qcnPCR method, whereby the insert DNA was quantified by qPCR against autosomal and sex-chromosome encoded genes. While the majority of clones had off-target inserts, at least one on-target clone was identified for each construct. Finally, immunofluorescence was utilized to localize GLuc in the selected clones. In iPSCs, the vesicle-directed GLuc should travel through the Golgi apparatus along the neurosecretory pathway, while the no tag GLuc should not follow this pathway. Initial analyses excluded the CgA-GLuc and SgII-GLuc clones due to poor quality protein visualization. The colocalization of GLuc with the Golgi was analyzed by confocal microscopy and quantified. GLuc was strongly colocalized with the Golgi in the hPOMC-GLuc clone (r = 0.85±0.09), moderately in the VAMP2-GLuc clone (r = 0.65±0.01), and, as expected, only weakly in the no tag GLuc clone (r = 0.44±0.10). Confocal microscopy of differentiated MNs was used to analyze the colocalization of GLuc with proteins associated with LDCVs and SVs, SgII in the hPOMC-GLuc clone (r = 0.85±0.08) and synaptophysin in the VAMP2-GLuc clone (r = 0.65±0.07). GLuc was also expressed in the same cells as the MN-associated protein, Islet1. A significant portion of GLuc was found in the correct cell type and compartment. However, in the MoN-Light BoNT assay, the hPOMC-GLuc clone could not be provoked to reliably release GLuc upon cellular depolarization. The depolarization protocol for hPOMC-GLuc must be further optimized to produce reliable and specific release of GLuc upon exposure to a stimulus. On the other hand, the VAMP2-GLuc clone could be provoked to release GLuc upon exposure to the muscarinic and nicotinic agonist carbachol. Furthermore, upon simultaneous exposure to the calcium chelator EGTA, the carbachol-provoked release of GLuc could be significantly repressed, indicating the detection of GLuc was likely associated with vesicular fusion at the presynaptic terminal. The application of the VAMP2-GLuc clone in the MoN-Light BoNT assay must still be verified, but the results thus far indicate that this clone could be appropriate for the application of BoNT toxicity assessment.}, language = {en} }