@article{OezkanFikriKırkıcıetal.2020, author = {{\"O}zkan, Ay{\c{s}}eg{\"u}l and Fikri, Figen Beken and K{\i}rk{\i}c{\i}, Bilal and Kliegl, Reinhold and Acart{\"u}rk, Cengiz}, title = {Eye movement control in Turkish sentence reading}, series = {Quarterly journal of experimental psychology : QJEP / EPS, Experimental Psychology Society}, volume = {74}, journal = {Quarterly journal of experimental psychology : QJEP / EPS, Experimental Psychology Society}, number = {2}, publisher = {Sage Publ.}, address = {London}, issn = {1747-0218}, doi = {10.1177/1747021820963310}, pages = {377 -- 397}, year = {2020}, abstract = {Reading requires the assembly of cognitive processes across a wide spectrum from low-level visual perception to high-level discourse comprehension. One approach of unravelling the dynamics associated with these processes is to determine how eye movements are influenced by the characteristics of the text, in particular which features of the words within the perceptual span maximise the information intake due to foveal, spillover, parafoveal, and predictive processing. One way to test the generalisability of current proposals of such distributed processing is to examine them across different languages. For Turkish, an agglutinative language with a shallow orthography-phonology mapping, we replicate the well-known canonical main effects of frequency and predictability of the fixated word as well as effects of incoming saccade amplitude and fixation location within the word on single-fixation durations with data from 35 adults reading 120 nine-word sentences. Evidence for previously reported effects of the characteristics of neighbouring words and interactions was mixed. There was no evidence for the expected Turkish-specific morphological effect of the number of inflectional suffixes on single-fixation durations. To control for word-selection bias associated with single-fixation durations, we also tested effects on word skipping, single-fixation, and multiple-fixation cases with a base-line category logit model, assuming an increase of difficulty for an increase in the number of fixations. With this model, significant effects of word characteristics and number of inflectional suffixes of foveal word on probabilities of the number of fixations were observed, while the effects of the characteristics of neighbouring words and interactions were mixed.}, language = {en} } @article{FuehnerKlieglArntzetal.2020, author = {F{\"u}hner, Thea Heidi and Kliegl, Reinhold and Arntz, Fabian and Kriemler, Susi and Granacher, Urs}, title = {An update on secular trends in physical fitness of children and adolescents from 1972 to 2015}, series = {Sports medicine}, volume = {51}, journal = {Sports medicine}, number = {2}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-020-01373-x}, pages = {303 -- 320}, year = {2020}, abstract = {Background There is evidence that physical fitness of children and adolescents (particularly cardiorespiratory endurance) has declined globally over the past decades. Ever since the first reports on negative trends in physical fitness, efforts have been undertaken by for instance the World Health Organization (WHO) to promote physical activity and fitness in children and adolescents. Therefore, it is timely to re-analyze the literature to examine whether previous reports on secular declines in physical fitness are still detectable or whether they need to be updated. Objectives The objective of this systematic review is to provide an 'update' on secular trends in selected components of physical fitness (i.e., cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed) in children and adolescents aged 6-18 years. Data Sources A systematic computerized literature search was conducted in the electronic databases PubMed and Web of Science to locate studies that explicitly reported secular trends in physical fitness of children and adolescents. Study Eligibility Criteria Studies were included in this systematic review if they examined secular trends between at least two time points across a minimum of 5 years. In addition, they had to document secular trends in any measure of cardiorespiratory endurance, relative muscle strength, proxies of muscle power or speed in apparently healthy children and adolescents aged 6-18 years. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: nation, physical fitness component (cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed), chronological age, sex (boys vs. girls), and year of assessment. Scores were standardized (i.e., converted to z scores) with sample-weighted means and standard deviations, pooled across sex and year of assessment within cells defined by study, test, and children's age. Results The original search identified 524 hits. In the end, 22 studies met the inclusion criteria for review. The observation period was between 1972 and 2015. Fifteen of the 22 studies used tests for cardiorespiratory endurance, eight for relative muscle strength, eleven for proxies of muscle power, and eight for speed. Measures of cardiorespiratory endurance exhibited a large initial increase and an equally large subsequent decrease, but the decrease appears to have reached a floor for all children between 2010 and 2015. Measures of relative muscle strength showed a general trend towards a small increase. Measures of proxies of muscle power indicated an overall small negative quadratic trend. For measures of speed, a small-to-medium increase was observed in recent years. Limitations Biological maturity was not considered in the analysis because biological maturity was not reported in most included studies. Conclusions Negative secular trends were particularly found for cardiorespiratory endurance between 1986 and 2010-12, irrespective of sex. Relative muscle strength and speed showed small increases while proxies of muscle power declined. Although the negative trend in cardiorespiratory endurance appears to have reached a floor in recent years, because of its association with markers of health, we recommend further initiatives in PA and fitness promotion for children and adolescents. More specifically, public health efforts should focus on exercise that increases cardiorespiratory endurance to prevent adverse health effects (i.e.
, overweight and obesity) and muscle strength to lay a foundation for motor skill learning.}, language = {en} } @article{SchadVasishthHohensteinetal.2020, author = {Schad, Daniel and Vasishth, Shravan and Hohenstein, Sven and Kliegl, Reinhold}, title = {How to capitalize on a priori contrasts in linear (mixed) models}, series = {Journal of memory and language}, volume = {110}, journal = {Journal of memory and language}, publisher = {Elsevier}, address = {San Diego}, issn = {0749-596X}, doi = {10.1016/j.jml.2019.104038}, pages = {40}, year = {2020}, abstract = {Factorial experiments in research on memory, language, and in other areas are often analyzed using analysis of variance (ANOVA). However, for effects with more than one numerator degrees of freedom, e.g., for experimental factors with more than two levels, the ANOVA omnibus F-test is not informative about the source of a main effect or interaction. Because researchers typically have specific hypotheses about which condition means differ from each other, a priori contrasts (i.e., comparisons planned before the sample means are known) between specific conditions or combinations of conditions are the appropriate way to represent such hypotheses in the statistical model. Many researchers have pointed out that contrasts should be "tested instead of, rather than as a supplement to, the ordinary 'omnibus' F test" (Hays, 1973, p. 601). In this tutorial, we explain the mathematics underlying different kinds of contrasts (i.e., treatment, sum, repeated, polynomial, custom, nested, interaction contrasts), discuss their properties, and demonstrate how they are applied in the R System for Statistical Computing (R Core Team, 2018). In this context, we explain the generalized inverse which is needed to compute the coefficients for contrasts that test hypotheses that are not covered by the default set of contrasts. A detailed understanding of contrast coding is crucial for successful and correct specification in linear models (including linear mixed models). Contrasts defined a priori yield far more useful confirmatory tests of experimental hypotheses than standard omnibus F-tests. Reproducible code is available from https://osf.io/7ukf6/.}, language = {en} }