@misc{HargisGotschPoradaetal.2019, author = {Hargis, Hailey and Gotsch, Sybil G. and Porada, Philipp and Moore, Georgianne W. and Ferguson, Briana and Van Stan, John T.}, title = {Arboreal epiphytes in the soil-atmosphere interface}, series = {Geosciences}, volume = {9}, journal = {Geosciences}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, doi = {10.3390/geosciences9080342}, pages = {17}, year = {2019}, abstract = {Arboreal epiphytes (plants residing in forest canopies) are present across all major climate zones and play important roles in forest biogeochemistry. The substantial water storage capacity per unit area of the epiphyte "bucket" is a key attribute underlying their capability to influence forest hydrological processes and their related mass and energy flows. It is commonly assumed that the epiphyte bucket remains saturated, or near-saturated, most of the time; thus, epiphytes (particularly vascular epiphytes) can store little precipitation, limiting their impact on the forest canopy water budget. We present evidence that contradicts this common assumption from (i) an examination of past research; (ii) new datasets on vascular epiphyte and epi-soil water relations at a tropical montane cloud forest (Monteverde, Costa Rica); and (iii) a global evaluation of non-vascular epiphyte saturation state using a process-based vegetation model, LiBry. All analyses found that the external and internal water storage capacity of epiphyte communities is highly dynamic and frequently available to intercept precipitation. Globally, non-vascular epiphytes spend <20\% of their time near saturation and regionally, including the humid tropics, model results found that non-vascular epiphytes spend similar to 1/3 of their time in the dry state (0-10\% of water storage capacity). Even data from Costa Rican cloud forest sites found the epiphyte community was saturated only 1/3 of the time and that internal leaf water storage was temporally dynamic enough to aid in precipitation interception. Analysis of the epi-soils associated with epiphytes further revealed the extent to which the epiphyte bucket emptied-as even the canopy soils were often <50\% saturated (29-53\% of all days observed). Results clearly show that the epiphyte bucket is more dynamic than currently assumed, meriting further research on epiphyte roles in precipitation interception, redistribution to the surface and chemical composition of "net" precipitation waters reaching the surface.}, language = {en} } @article{HierroBurgosFonsecaRamezaniZiaranietal.2019, author = {Hierro, Rodrigo and Burgos Fonseca, Y. and Ramezani Ziarani, Maryam and Llamedo, P. and Schmidt, Torsten and de la Torre, Alejandro and Alexander, P.}, title = {On the behavior of rainfall maxima at the eastern Andes}, series = {Atmospheric Research}, volume = {234}, journal = {Atmospheric Research}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0169-8095}, doi = {10.1016/j.atmosres.2019.104792}, year = {2019}, abstract = {In this study, we detect high percentile rainfall events in the eastern central Andes, based on Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25 × 0.25°, a temporal resolution of 3 h, and for the duration from 2001 to 2018. We identify three areas with high mean accumulated rainfall and analyze their atmospheric behaviour and rainfall characteristics with specific focus on extreme events. Extreme events are defined by events above the 95th percentile of their daily mean accumulated rainfall. Austral summer (DJF) is the period of the year presenting the most frequent extreme events over these three regions. Daily statistics show that the spatial maxima, as well as their associated extreme events, are produced during the night. For the considered period, ERA-Interim reanalysis data, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) with 0.75° x0.75° spatial and 6-hourly temporal resolutions, were used for the analysis of the meso- and synoptic-scale atmospheric patterns. Night- and day-time differences indicate a nocturnal overload of northerly and northeasterly low-level humidity flows arriving from tropical South America. Under these conditions, cooling descending air from the mountains may find unstable air at the surface, giving place to the development of strong local convection. Another possible mechanism is presented here: a forced ascent of the low-level flow due to the mountains, disrupting the atmospheric stratification and generating vertical displacement of air trajectories. A Principal Component Analysis (PCA) in T-mode is applied to day- and night-time data during the maximum and extreme events. The results show strong correlation areas over each subregion under study during night-time, whereas during day-time no defined patterns are found. This confirms the observed nocturnal behavior of rainfall within these three hotspots.}, language = {en} }