@misc{KaempfPlessenLauterbachetal.2019, author = {K{\"a}mpf, Lucas and Plessen, Birgit and Lauterbach, Stefan and Nantke, Carla and Meyer, Hanno and Chapligin, Bernhard and Brauer, Achim}, title = {Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-55000}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550004}, pages = {7}, year = {2019}, abstract = {Lake sediments are increasingly explored as reliable paleoflood archives. In addition to established flood proxies including detrital layer thickness, chemical composition, and grain size, we explore stable oxygen and carbon isotope data as paleoflood proxies for lakes in catchments with carbonate bedrock geology. In a case study from Lake Mondsee (Austria), we integrate high-resolution sediment trapping at a proximal and a distal location and stable isotope analyses of varved lake sediments to investigate flood-triggered detrital sediment flux. First, we demonstrate a relation between runoff, detrital sediment flux, and isotope values in the sediment trap record covering the period 2011-2013 CE including 22 events with daily (hourly) peak runoff ranging from 10 (24) m(3) s(-1) to 79 (110) m(3) s(-1). The three- to ten-fold lower flood-triggered detrital sediment deposition in the distal trap is well reflected by attenuated peaks in the stable isotope values of trapped sediments. Next, we show that all nine flood-triggered detrital layers deposited in a sediment record from 1988 to 2013 have elevated isotope values compared with endogenic calcite. In addition, even two runoff events that did not cause the deposition of visible detrital layers are distinguished by higher isotope values. Empirical thresholds in the isotope data allow estimation of magnitudes of the majority of floods, although in some cases flood magnitudes are overestimated because local effects can result in too-high isotope values. Hence we present a proof of concept for stable isotopes as reliable tool for reconstructing flood frequency and, although with some limitations, even for flood magnitudes.}, language = {en} } @article{KaempfPlessenLauterbachetal.2019, author = {K{\"a}mpf, Lucas and Plessen, Birgit and Lauterbach, Stefan and Nantke, Carla and Meyer, Hanno and Chapligin, Bernhard and Brauer, Achim}, title = {Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy}, series = {Geology / the Geological Society of America}, volume = {48}, journal = {Geology / the Geological Society of America}, number = {1}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {1943-2682}, doi = {10.1130/G46593.1}, pages = {3 -- 7}, year = {2019}, abstract = {Lake sediments are increasingly explored as reliable paleoflood archives. In addition to established flood proxies including detrital layer thickness, chemical composition, and grain size, we explore stable oxygen and carbon isotope data as paleoflood proxies for lakes in catchments with carbonate bedrock geology. In a case study from Lake Mondsee (Austria), we integrate high-resolution sediment trapping at a proximal and a distal location and stable isotope analyses of varved lake sediments to investigate flood-triggered detrital sediment flux. First, we demonstrate a relation between runoff, detrital sediment flux, and isotope values in the sediment trap record covering the period 2011-2013 CE including 22 events with daily (hourly) peak runoff ranging from 10 (24) m(3) s(-1) to 79 (110) m(3) s(-1). The three- to ten-fold lower flood-triggered detrital sediment deposition in the distal trap is well reflected by attenuated peaks in the stable isotope values of trapped sediments. Next, we show that all nine flood-triggered detrital layers deposited in a sediment record from 1988 to 2013 have elevated isotope values compared with endogenic calcite. In addition, even two runoff events that did not cause the deposition of visible detrital layers are distinguished by higher isotope values. Empirical thresholds in the isotope data allow estimation of magnitudes of the majority of floods, although in some cases flood magnitudes are overestimated because local effects can result in too-high isotope values. Hence we present a proof of concept for stable isotopes as reliable tool for reconstructing flood frequency and, although with some limitations, even for flood magnitudes.}, language = {en} } @article{EiblHainzlVeselyetal.2019, author = {Eibl, Eva P. S. and Hainzl, Sebastian and Vesely, Nele I. K. and Walter, Thomas R. and Jousset, Philippe and Hersir, Gylfi Pall and Dahm, Torsten}, title = {Eruption interval monitoring at strokkur Geyser, Iceland}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL085266}, pages = {10}, year = {2019}, abstract = {Geysers are hot springs whose frequency of water eruptions remain poorly understood. We set up a local broadband seismic network for 1 year at Strokkur geyser, Iceland, and developed an unprecedented catalog of 73,466 eruptions. We detected 50,135 single eruptions but find that the geyser is also characterized by sets of up to six eruptions in quick succession. The number of single to sextuple eruptions exponentially decreased, while the mean waiting time after an eruption linearly increased (3.7 to 16.4 min). While secondary eruptions within double to sextuple eruptions have a smaller mean seismic amplitude, the amplitude of the first eruption is comparable for all eruption types. We statistically model the eruption frequency assuming discharges proportional to the eruption multiplicity and a constant probability for subsequent events within a multituple eruption. The waiting time after an eruption is predictable but not the type or amplitude of the next one.
Plain Language Summary Geysers are springs that often erupt in hot water fountains. They erupt more often than volcanoes but are quite similar. Nevertheless, it is poorly understood how often volcanoes and also geysers erupt. We created a list of 73,466 eruption times of Strokkur geyser, Iceland, from 1 year of seismic data. The geyser erupted one to six times in quick succession. We found 50,135 single eruptions but only 1 sextuple eruption, while the mean waiting time increased from 3.7 min after single eruptions to 16.4 min after sextuple eruptions. Mean amplitudes of each eruption type were higher for single eruptions, but all first eruptions in a succession were similar in height. Assuming a constant heat inflow at depth, we can predict the waiting time after an eruption but not the type or amplitude of the next one.}, language = {en} } @misc{AyzelVarentsovaErinaetal.2019, author = {Ayzel, Georgy and Varentsova, Natalia and Erina, Oxana and Sokolov, Dmitriy and Kurochkina, Liubov and Moreydo, Vsevolod}, title = {OpenForecast}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1338}, issn = {1866-8372}, doi = {10.25932/publishup-47329}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473295}, pages = {17}, year = {2019}, abstract = {The development and deployment of new operational runoff forecasting systems are a strong focus of the scientific community due to the crucial importance of reliable and timely runoff predictions for early warnings of floods and flashfloods for local businesses and communities. OpenForecast, the first operational runoff forecasting system in Russia, open for public use, is presented in this study. We developed OpenForecast based only on open-source software and data-GR4J hydrological model, ERA-Interim meteorological reanalysis, and ICON deterministic short-range meteorological forecasts. Daily forecasts were generated for two basins in the European part of Russia. Simulation results showed a limited efficiency in reproducing the spring flood of 2019. Although the simulations managed to capture the timing of flood peaks, they failed in estimating flood volume. However, further implementation of the parsimonious data assimilation technique significantly alleviates simulation errors. The revealed limitations of the proposed operational runoff forecasting system provided a foundation to outline its further development and improvement.}, language = {en} } @misc{BriegerHerzschuhPestryakovaetal.2019, author = {Brieger, Frederic and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Bookhagen, Bodo and Zakharov, Evgenii S. and Kruse, Stefan}, title = {Advances in the derivation of Northeast Siberian forest metrics using high-resolution UAV-based photogrammetric point clouds}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1337}, issn = {1866-8372}, doi = {10.25932/publishup-47331}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473318}, pages = {24}, year = {2019}, abstract = {Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra-taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1\% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE\%) for tree heights (mean R2 = 0.77, mean RMSE\% = 18.46\%) than for crown diameters (mean R2 = 0.46, mean RMSE\% = 24.9\%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees <2 m. Our results show that plot sizes for vegetation surveys in the tundra-taiga ecotone should be adapted to the forest structure and have a radius of >15-20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest's stand structure.}, language = {en} } @article{SobczykSobelGeorgieva2019, author = {Sobczyk, Artur and Sobel, Edward and Georgieva, Viktoria}, title = {Meso-Cenozoic cooling and exhumation history of the Orlica-snie(z) over dotnik Dome (Sudetes, NE Bohemian Massif, Central Europe)}, series = {Terra nova}, volume = {32}, journal = {Terra nova}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0954-4879}, doi = {10.1111/ter.12449}, pages = {122 -- 133}, year = {2019}, abstract = {This study presents the first suite of apatite fission-track (AFT) ages from the SE part of the Western Sudetes. AFT cooling ages from the Orlica-snie(z) over dotnik Dome and the Upper Nysa Klodzka Graben range from Late Cretaceous (84 Ma) to Early Palaeocene-Middle Eocene (64-45 Ma). The first stage of basin evolution (similar to 100-90 Ma) was marked by the formation of a local extensional depocentre and disruption of the Mesozoic planation surface. Subsequent far-field convergence of European microplates resulted in Coniacian-Santonian (similar to 89-83 Ma) thrust faulting. AFT data from both metamorphic basement and Mesozoic sedimentary cover indicate homogenous Late Cretaceous burial of the entire Western Sudetes. Thermal history modeling suggests that the onset of cooling could be constrained between 89 and 63 Ma with a climax during the Palaeocene-Middle Eocene basin inversion phase.}, language = {en} } @phdthesis{Stroncik2019, author = {Stroncik, Nicole A.}, title = {Volatiles as tracers for mantle processes and magma formation and evolution}, pages = {102}, year = {2019}, abstract = {The geochemical composition of oceanic basalts provides us with a window into the distribution of geochemical elements within the Earth's mantle in space and time. In conjunction with a throughout knowledge on how the different elements behave e.g. during melt formation and evolution or on their partition behaviour between e.g. minerals and melts this information has been transformed into various models on how oceanic crust is formed along plume influenced or normal mid-ocean ridge segments, how oceanic crust evolves in response to seawater, on subduction recycling of oceanic crust and so forth. The work presented in this habilitation was aimed at refining existing models, putting further constraints on some of the major open questions in this field of research while at the same time trying to increase our knowledge on the behaviour of noble gases as a tracer for melt formation and evolution processes. In the line of this work the author and her co-workers were able to answer one of the major questions concerning the formation of oceanic crust along plume-influenced ridges - in which physical state does the plume material enter the ridge? Based on submarine volcanic glass He, Ne and Ar data, the author and her co-workers have shown that the interaction of mantle plumes with mid-ocean ridges occurs in the physical form of melts. In addition, the author and her co-workers have also put further constraints on one of the major questions concerning the formation of oceanic crust along normal mid-ocean ridges - namely how is the mid-ocean ridge system effectively cooled to form the lower oceanic crust? Based on Ne and Ar data in combination with Cl/K ratios of basaltic glass from the Mid-Atlantic ridge and estimates of crystallisation pressures they have shown, that seawater penetration reaches lower crustal levels close to the Moho, indicating that hydrothermal circulation might be an effective cooling mechanism even for the deep parts of the oceanic crust. Considering subduction recycling, the heterogeneity of the Earth's mantle and mantle dynamic processes the key question is on which temporal and spatial scales is the Earth's mantle geochemically heterogeneous? In the line of this work the author along with her co-workers have shown based on Cl/K ratios in conjunction with the Sr, Nd, and Pb isotopes of the OIBs representing the type localities for the different mantle endmembers that the quantity of Cl recycled into the mantle via subduction is not uniform and that neither the HIMU nor the EM1 and EM2 mantle components can be considered as distinct mantle endmembers. In addition, we have shown, based on He, Ne and Ar isotope and trace-element data from the Foundation hotspot that the near ridge seamounts of the Foundation seamount chain formed by the Foundation hotspot erupt lavas with a trace-element signature clearly characteristic of oceanic gabbro which indicates the existence of recycled, virtually unchanged lower oceanic crust in the plume source. This is a clear sign of the inefficiency of the stirring mechanism existing at mantle depth. Similar features are seen in other near-axis hotspot magmas around the world. Based on He, Sr, Nd, Pb and O isotopes and trace elements in primitive mafic dykes from the Etendeka flood basalts, NW Namibia the author along with her co-workers have shown that deep, less degassed mantle material carried up by a mantle plume contributed significantly to the flood basalt magmatism. The Etendeka flood basalts are part of the South Atlantic LIP, which is associated with the breakup of Gondwana, the formation of the Paran{\´a}-Etendeka flood basalts and the Walvis Ridge - Tristan da Cunha hotspot track. Thus reinforcing the lately often-challenged concept of mantle plumes and the role of mantle plumes in the formation of large igneous provinces. Studying the behaviour of noble gases during melt formation and evolution the author along with her co-workers has shown that He can be considerable more susceptible to changes during melt formation and evolution resulting not only in a complete decoupling of He isotopes from e.g. Ne or Pb isotopes but also in a complete loss of the primary mantle isotope signal. They have also shown that this decoupling occurs mainly during the melt formation processes requiring He to be more compatible during mantle melting than Ne. In addition, the author along with her co workers were able to show that incorporation of atmospheric noble gases into igneous rocks is in general a two-step process: (1) magma contamination by assimilation of altered oceanic crust results in the entrainment of air-equilibrated seawater noble gases; (2) atmospheric noble gases are adsorbed onto grain surfaces during sample preparation. This implies, considering the ubiquitous presence of the contamination signal, that magma contamination by assimilation of a seawater-sourced component is an integral part of mid-ocean ridge basalt evolution.}, language = {en} } @article{WickertSchildgen2019, author = {Wickert, Andrew D. and Schildgen, Taylor F.}, title = {Long-profile evolution of transport-limited gravel-bed rivers}, series = {Earth surface dynamics}, volume = {7}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-7-17-2019}, pages = {17 -- 43}, year = {2019}, abstract = {Alluvial and transport-limited bedrock rivers constitute the majority of fluvial systems on Earth. Their long profiles hold clues to their present state and past evolution. We currently possess first-principles-based governing equations for flow, sediment transport, and channel morphodynamics in these systems, which we lack for detachment-limited bedrock rivers. Here we formally couple these equations for transport-limited gravel-bed river long-profile evolution. The result is a new predictive relationship whose functional form and parameters are grounded in theory and defined through experimental data. From this, we produce a power-law analytical solution and a finite-difference numerical solution to long-profile evolution. Steady-state channel concavity and steepness are diagnostic of external drivers: concavity decreases with increasing uplift rate, and steepness increases with an increasing sediment-to-water supply ratio. Constraining free parameters explains common observations of river form: to match observed channel concavities, gravel-sized sediments must weather and fine - typically rapidly - and valleys typically should widen gradually. To match the empirical square-root width-discharge scaling in equilibrium-width gravel-bed rivers, downstream fining must occur. The ability to assign a cause to such observations is the direct result of a deductive approach to developing equations for landscape evolution.}, language = {en} } @misc{NitzeGrosseJonesetal.2019, author = {Nitze, Ingmar and Grosse, Guido and Jones, B. M. and Romanovsky, Vladimir E. and Boike, Julia}, title = {Author Correction: Nitze, I; Grosse, G; Jones, B.M.; Romanovsky, V.E.; Boike, J.: Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. - Nature Communications. - 9 (2018), 5423}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-08375-y}, pages = {1}, year = {2019}, language = {en} } @article{SchneiderHoffmannMuenkeretal.2019, author = {Schneider, K. P. and Hoffmann, J. E. and M{\"u}nker, C. and Patyniak, Magda and Sprung, P. and Roerdink, D. and Garbe-Sch{\"o}nberg, D. and Kr{\"o}ner, A.}, title = {Petrogenetic evolution of metabasalts and metakomatiites of the lower Onverwacht Group, Barberton Greenstone Belt (South Africa)}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {511}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2019.02.020}, pages = {152 -- 177}, year = {2019}, abstract = {A well-preserved sequence, by Archean standards, of mantle-derived metabasalts and metakomatiites forms large parts of the lower Onverwacht Group of the Barberton Greenstone Belt (South Africa). To elucidate the origin of mafic and ultramafic rocks from this 3.55 to 3.45 Ga sequence, we present a comprehensive geochemical dataset including major and trace elements as well as Lu-Hf and Sm-Nd isotope compositions for a variety of metavolcanic rocks. These include metabasalts of the amphibolite-facies Sandspruit and Theespruit Formations as well as metabasalts and metakomatiites of the lower greenschist-facies Komati Formation. Based on their incompatible trace element patterns, the basalts of the Sandspruit and Theespruit Formations can be subdivided into a light rare earth element (LREE) depleted group, a LREE-undepleted group, and a LREE-enriched group. Positive epsilon Hf-(t) and epsilon Nd-(t) values of ca. +3 to +4 and 0 to +2, respectively, together with depletions in Th and La-CN/Yb-CN indicate derivation of the LREE-depleted basalts from a depleted mantle source. However, chondritic epsilon Hf-(t) and epsilon Nd-(t) values combined with positive Th and La-CN/Yb-CN of the LREE-enriched samples indicate a contribution from older granitoid crust in the petrogenesis of these samples. Trace element patterns of komatiites and basalts of the Komati Formation are generally flat relative to primitive mantle with slight depletions in heavy rare earth elements and Th and overall positive epsilon Hf-(t) of + 2.5 +/- 3.5 (2 s.d.) and epsilon Nd-(t) of + 0.5 +/- 2.2 (2 s. d.). The coherence in trace element characteristics suggests a common magmatic origin for basalts and komatiites. This study reveals that the two lavas were derived from the same mantle plume, i. e. komatiites were formed by high degrees of melting of a depleted mantle source containing residual garnet and the basalts were formed by moderate degrees of partial melting in shallower regions of the mantle. Based on the current dataset, combined with published data, we propose a geodynamic model for the oldest units of the Barberton Greenstone Belt that describes the development from a submerged continental setting (for the Sandspruit and Theespruit Formations) to a submarine plateau setting (for the Komati Formation) as a consequence of continental rifting.}, language = {en} }