@misc{Guehr2016, author = {G{\"u}hr, Markus}, title = {Ultrafast Soft X-ray Probing of Gas Phase Molecular Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97215}, year = {2016}, abstract = {The molecular ability to selectively and efficiently convert sunlight into other forms of energy like heat, bond change, or charge separation is truly remarkable. The decisive steps in these transformations often happen on a femtosecond timescale and require transitions among different electronic states that violate the Born-Oppenheimer approximation (BOA). Non-BOA transitions pose challenges to both theory and experiment. From a theoretical point of view, excited state dynamics and nonadiabatic transitions both are difficult problems (see Figure 1(a)). However, the theory on non-BOA dynamics has advanced significantly over the last two decades. Full dynamical simulations for molecules of the size of nucleobases have been possible for a couple of years and allow predictions of experimental observables like photoelectron energy or ion yield. The availability of these calculations for isolated molecules has spurred new experimental efforts to develop methods that are sufficiently different from all optical techniques. For determination of transient molecular structure, femtosecond X-ray diffraction and electron diffraction have been implemented on optically excited molecules.}, language = {en} } @misc{BodrovaChechkinCherstvyetal.2016, author = {Bodrova, Anna S. and Chechkin, Aleksei and Cherstvy, Andrey G. and Safdari, Hadiseh and Sokolov, Igor M. and Metzler, Ralf}, title = {Underdamped scaled Brownian motion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97158}, pages = {16}, year = {2016}, abstract = {It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.}, language = {en} } @article{BodrovaChechkinCherstvyetal.2016, author = {Bodrova, Anna S. and Chechkin, Aleksei and Cherstvy, Andrey G. and Safdari, Hadiseh and Sokolov, Igor M. and Metzler, Ralf}, title = {Underdamped scaled Brownian motion}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep30520}, year = {2016}, abstract = {It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.}, language = {en} } @phdthesis{Bojahr2016, author = {Bojahr, Andre}, title = {Hypersound interaction studied by time-resolved inelastic light and x-ray scattering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93860}, school = {Universit{\"a}t Potsdam}, pages = {xxiii, 201}, year = {2016}, abstract = {This publications-based thesis summarizes my contribution to the scientific field of ultrafast structural dynamics. It consists of 16 publications, about the generation, detection and coupling of coherent gigahertz longitudinal acoustic phonons, also called hypersonic waves. To generate such high frequency phonons, femtosecond near infrared laser pulses were used to heat nanostructures composed of perovskite oxides on an ultrashort timescale. As a consequence the heated regions of such a nanostructure expand and a high frequency acoustic phonon pulse is generated. To detect such coherent acoustic sound pulses I use ultrafast variants of optical Brillouin and x-ray scattering. Here an incident optical or x-ray photon is scattered by the excited sound wave in the sample. The scattered light intensity measures the occupation of the phonon modes. The central part of this work is the investigation of coherent high amplitude phonon wave packets which can behave nonlinearly, quite similar to shallow water waves which show a steepening of wave fronts or solitons well known as tsunamis. Due to the high amplitude of the acoustic wave packets in the solid, the acoustic properties can change significantly in the vicinity of the sound pulse. This may lead to a shape change of the pulse. I have observed by time-resolved Brillouin scattering, that a single cycle hypersound pulse shows a wavefront steepening. I excited hypersound pulses with strain amplitudes until 1\% which I have calibrated by ultrafast x-ray diffraction (UXRD). On the basis of this first experiment we developed the idea of the nonlinear mixing of narrowband phonon wave packets which we call "nonlinear phononics" in analogy with the nonlinear optics, which summarizes a kaleidoscope of surprising optical phenomena showing up at very high electric fields. Such phenomena are for instance Second Harmonic Generation, four-wave-mixing or solitons. But in case of excited coherent phonons the wave packets have usually very broad spectra which make it nearly impossible to look at elementary scattering processes between phonons with certain momentum and energy. For that purpose I tested different techniques to excite narrowband phonon wave packets which mainly consist of phonons with a certain momentum and frequency. To this end epitaxially grown metal films on a dielectric substrate were excited with a train of laser pulses. These excitation pulses drive the metal film to oscillate with the frequency given by their inverse temporal displacement and send a hypersonic wave of this frequency into the substrate. The monochromaticity of these wave packets was proven by ultrafast optical Brillouin and x-ray scattering. Using the excitation of such narrowband phonon wave packets I was able to observe the Second Harmonic Generation (SHG) of coherent phonons as a first example of nonlinear wave mixing of nanometric phonon wave packets.}, language = {en} } @phdthesis{AmaroSeoane2016, author = {Amaro-Seoane, Pau}, title = {Dense stellar systems and massive black holes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95439}, school = {Universit{\"a}t Potsdam}, pages = {239}, year = {2016}, abstract = {Gravity dictates the structure of the whole Universe and, although it is triumphantly described by the theory of General Relativity, it is the force that we least understand in nature. One of the cardinal predictions of this theory are black holes. Massive, dark objects are found in the majority of galaxies. Our own galactic center very contains such an object with a mass of about four million solar masses. Are these objects supermassive black holes (SMBHs), or do we need alternatives? The answer lies in the event horizon, the characteristic that defines a black hole. The key to probe the horizon is to model the movement of stars around a SMBH, and the interactions between them, and look for deviations from real observations. Nuclear star clusters harboring a massive, dark object with a mass of up to ~ ten million solar masses are good testbeds to probe the event horizon of the potential SMBH with stars. The channel for interactions between stars and the central MBH are the fact that (a) compact stars and stellar-mass black holes can gradually inspiral into the SMBH due to the emission of gravitational radiation, which is known as an "Extreme Mass Ratio Inspiral" (EMRI), and (b) stars can produce gases which will be accreted by the SMBH through normal stellar evolution, or by collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the SMBH. These two processes involve different disciplines, which combined will provide us with detailed information about the fabric of space and time. In this habilitation I present nine articles of my recent work directly related with these topics.}, language = {en} } @phdthesis{Dionysopoulou2016, author = {Dionysopoulou, Kyriaki}, title = {General-relativistic magnetohydrodynamics in compact objects}, school = {Universit{\"a}t Potsdam}, pages = {144}, year = {2016}, language = {en} } @misc{CherstvyMetzler2016, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95901}, pages = {23840 -- 23852}, year = {2016}, abstract = {We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and has a deterministic average growth or decay in time. In this study we compare computer simulations of the stochastic Langevin equation for this random diffusion process with analytical results. We explore the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive regimes. We also consider effects of the inertial term on the particle motion. The investigation of the resulting diffusion is performed for unconfined and confined motion.}, language = {en} } @article{CherstvyMetzler2016, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {18}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C6CP03101C}, pages = {23840 -- 23852}, year = {2016}, abstract = {We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and has a deterministic average growth or decay in time. In this study we compare computer simulations of the stochastic Langevin equation for this random diffusion process with analytical results. We explore the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive regimes. We also consider effects of the inertial term on the particle motion. The investigation of the resulting diffusion is performed for unconfined and confined motion.}, language = {en} } @article{GhoshCherstvyPetrovetal.2016, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Petrov, Eugene P. and Metzler, Ralf}, title = {Interactions of rod-like particles on responsive elastic sheets}, series = {Soft matter}, journal = {Soft matter}, publisher = {RSC}, address = {London}, issn = {1744-6848}, doi = {10.1039/C6SM01522K}, year = {2016}, abstract = {What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive-repulsive rod-rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed.}, language = {en} } @misc{GhoshCherstvyPetrovetal.2016, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Petrov, Eugene P. and Metzler, Ralf}, title = {Interactions of rod-like particles on responsive elastic sheets}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95882}, year = {2016}, abstract = {What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive-repulsive rod-rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed.}, language = {en} }