@phdthesis{Lindemann2016, author = {Lindemann, Anke}, title = {Briefe von und an Friedrich Eberhard von Rochow}, school = {Universit{\"a}t Potsdam}, pages = {1485}, year = {2016}, language = {de} } @phdthesis{AmaroSeoane2016, author = {Amaro-Seoane, Pau}, title = {Dense stellar systems and massive black holes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95439}, school = {Universit{\"a}t Potsdam}, pages = {239}, year = {2016}, abstract = {Gravity dictates the structure of the whole Universe and, although it is triumphantly described by the theory of General Relativity, it is the force that we least understand in nature. One of the cardinal predictions of this theory are black holes. Massive, dark objects are found in the majority of galaxies. Our own galactic center very contains such an object with a mass of about four million solar masses. Are these objects supermassive black holes (SMBHs), or do we need alternatives? The answer lies in the event horizon, the characteristic that defines a black hole. The key to probe the horizon is to model the movement of stars around a SMBH, and the interactions between them, and look for deviations from real observations. Nuclear star clusters harboring a massive, dark object with a mass of up to ~ ten million solar masses are good testbeds to probe the event horizon of the potential SMBH with stars. The channel for interactions between stars and the central MBH are the fact that (a) compact stars and stellar-mass black holes can gradually inspiral into the SMBH due to the emission of gravitational radiation, which is known as an "Extreme Mass Ratio Inspiral" (EMRI), and (b) stars can produce gases which will be accreted by the SMBH through normal stellar evolution, or by collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the SMBH. These two processes involve different disciplines, which combined will provide us with detailed information about the fabric of space and time. In this habilitation I present nine articles of my recent work directly related with these topics.}, language = {en} } @phdthesis{Mueller2016, author = {M{\"u}ller, Hans-Georg}, title = {Der Majuskelgebrauch im Deutschen}, series = {Germanistische Linguistik ; 305}, volume = {2016}, journal = {Germanistische Linguistik ; 305}, publisher = {de Gruyter}, address = {Berlin}, isbn = {978-3-11-046096-4}, doi = {doi.org/10.1515/9783110460964}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2016}, abstract = {Die Arbeit stellt die Funktionsweise und den Erwerb der deutschen Groß- und Kleinschreibung auf theoretischer und empirischer Grundlage dar. Den Ausgangspunkt bildet eine textpragmatische Verallgemeinerung bisheriger graphematischer Ans{\"a}tze, die zu einem {\"u}bergreifenden Modell des Majuskelgebrauchs im Deutschen erweitert werden und dabei auch nicht-orthografische Teilbereiche einschließen (Versalsatz, Kapit{\"a}lchen, Binnenmajuskel etc.). Im empirischen Teil der Arbeit werden die orthografischen Leistungsdaten von ca. 5.700 Probanden verschiedener Altersklassen (4. Klasse bis Erwachsenenbildung) untersucht und zu einem allgemeinen Erwerbsmodell der Groß- und Kleinschreibung ausgebaut. Mit Hilfe neuronaler Netzwerksimulationen werden unterschiedliche Lernertypen unterschieden und Diskontinuit{\"a}ten im Kompetenzerwerb nachgewiesen, die auf qualitative Strategiewechsel in der Ontogenese hindeuten. Den Abschluss bilden orthografiedidaktische und rechtschreibdiagnostische Reflexionen der Daten.}, language = {de} } @phdthesis{Habicht2016, author = {Habicht, Klaus}, title = {Neutron-resonance spin-echo spectroscopy}, school = {Universit{\"a}t Potsdam}, pages = {276}, year = {2016}, language = {en} } @phdthesis{Kersten2016, author = {Kersten, Birgit}, title = {Proteom-weite Studien zur Phosphorylierung pflanzlicher Proteine mittels Proteinmikroarrays und Bioinformatik}, school = {Universit{\"a}t Potsdam}, year = {2016}, language = {de} } @phdthesis{KonradSchmolke2016, author = {Konrad-Schmolke, Matthias}, title = {Thermodynamic and geochemical modeling in metamorphic geology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101805}, school = {Universit{\"a}t Potsdam}, pages = {232}, year = {2016}, abstract = {Quantitative thermodynamic and geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to the oceanic realm. Thermodynamic calculations are used, for example, to get better insight into lithosphere dynamics, to constrain melting processes in crust and mantle as well as to study fluid-rock interaction. The development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams have greatly advanced our ability to model geodynamic processes from subduction to orogenesis. However, a well-known problem is that despite its broad application the use and interpretation of thermodynamic models applied to natural rocks is far from straightforward. For example, chemical disequilibrium and/or unknown rock properties, such as fluid activities, complicate the application of equilibrium thermodynamics. One major aspect of the publications presented in this Habilitationsschrift are new approaches to unravel dynamic and chemical histories of rocks that include applications to chemically open system behaviour. This approach is especially important in rocks that are affected by element fractionation due to fractional crystallisation and fluid loss during dehydration reactions. Furthermore, chemically open system behaviour has also to be considered for studying fluid-rock interaction processes and for extracting information from compositionally zoned metamorphic minerals. In this Habilitationsschrift several publications are presented where I incorporate such open system behaviour in the forward models by incrementing the calculations and considering changing reacting rock compositions during metamorphism. I apply thermodynamic forward modelling incorporating the effects of element fractionation in a variety of geodynamic and geochemical applications in order to better understand lithosphere dynamics and mass transfer in solid rocks. In three of the presented publications I combine thermodynamic forward models with trace element calculations in order to enlarge the application of geochemical numerical forward modeling. In these publications a combination of thermodynamic and trace element forward modeling is used to study and quantify processes in metamorphic petrology at spatial scales from µm to km. In the thermodynamic forward models I utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. One of the included publications shows that trace element growth zonations in metamorphic garnet porphyroblasts can be used to get crucial information about the reaction path of the investigated sample. In order to interpret the major and trace element distribution and zoning patterns in terms of the reaction history of the samples, we combined thermodynamic forward models with mass-balance rare earth element calculations. Such combined thermodynamic and mass-balance calculations of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. We can show in that paper that garnet growth and trace element incorporation occurred in near thermodynamic equilibrium with matrix phases during subduction and that the rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions. In two of the presented publications I illustrate the capacities of combined thermodynamic-geochemical modeling based on examples relevant to mass transfer in subduction zones. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab and associated transport of B and variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. I show that, combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In my publications presented in this Habilitationsschrift I compare the modeled results to geochemical data of natural minerals and rocks and demonstrate that the combination of thermodynamic and geochemical models enables quantification of metamorphic processes and insights into element cycling that would have been unattainable so far. Thus, the contributions to the science community presented in this Habilitatonsschrift concern the fields of petrology, geochemistry, geochronology but also ore geology that all use thermodynamic and geochemical models to solve various problems related to geo-materials.}, language = {en} }