@article{RoezerMuellerBubecketal.2016, author = {R{\"o}zer, Viktor and M{\"u}ller, Meike and Bubeck, Philip and Kienzler, Sarah and Thieken, Annegret and Pech, Ina and Schr{\"o}ter, Kai and Buchholz, Oliver and Kreibich, Heidi}, title = {Coping with Pluvial Floods by Private Households}, series = {Water}, volume = {8}, journal = {Water}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w8070304}, pages = {24}, year = {2016}, abstract = {Pluvial floods have caused severe damage to urban areas in recent years. With a projected increase in extreme precipitation as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. Therefore, further insights, especially on the adverse consequences of pluvial floods and their mitigation, are needed. To gain more knowledge, empirical damage data from three different pluvial flood events in Germany were collected through computer-aided telephone interviews. Pluvial flood awareness as well as flood experience were found to be low before the respective flood events. The level of private precaution increased considerably after all events, but is mainly focused on measures that are easy to implement. Lower inundation depths, smaller potential losses as compared with fluvial floods, as well as the fact that pluvial flooding may occur everywhere, are expected to cause a shift in damage mitigation from precaution to emergency response. However, an effective implementation of emergency measures was constrained by a low dissemination of early warnings in the study areas. Further improvements of early warning systems including dissemination as well as a rise in pluvial flood preparedness are important to reduce future pluvial flood damage.}, language = {en} } @misc{BubeckAertsdeMoeletal.2016, author = {Bubeck, Philip and Aerts, Jeroen C. J. H. and de Moel, Hans and Kreibich, Heidi}, title = {Preface}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {609}, issn = {1866-8372}, doi = {10.25932/publishup-41238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412387}, pages = {6}, year = {2016}, abstract = {kein abstract}, language = {en} } @misc{BubeckAertsdeMoeletal.2016, author = {Bubeck, Philip and Aerts, Jeroen C. J. H. and de Moel, Hans and Kreibich, Heidi}, title = {Preface: Flood-risk analysis and integrated management}, series = {Natural hazards and earth system sciences}, volume = {16}, journal = {Natural hazards and earth system sciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-16-1005-2016}, pages = {1005 -- 1010}, year = {2016}, language = {en} } @article{KreibichBottoMerzetal.2016, author = {Kreibich, Heidi and Botto, Anna and Merz, Bruno and Schr{\"o}ter, Kai}, title = {Probabilistic, Multivariable Flood Loss Modeling on the Mesoscale with BT-FLEMO}, series = {Risk analysis}, volume = {37}, journal = {Risk analysis}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0272-4332}, doi = {10.1111/risa.12650}, pages = {774 -- 787}, year = {2016}, abstract = {Flood loss modeling is an important component for risk analyses and decision support in flood risk management. Commonly, flood loss models describe complex damaging processes by simple, deterministic approaches like depth-damage functions and are associated with large uncertainty. To improve flood loss estimation and to provide quantitative information about the uncertainty associated with loss modeling, a probabilistic, multivariable Bagging decision Tree Flood Loss Estimation MOdel (BT-FLEMO) for residential buildings was developed. The application of BT-FLEMO provides a probability distribution of estimated losses to residential buildings per municipality. BT-FLEMO was applied and validated at the mesoscale in 19 municipalities that were affected during the 2002 flood by the River Mulde in Saxony, Germany. Validation was undertaken on the one hand via a comparison with six deterministic loss models, including both depth-damage functions and multivariable models. On the other hand, the results were compared with official loss data. BT-FLEMO outperforms deterministic, univariable, and multivariable models with regard to model accuracy, although the prediction uncertainty remains high. An important advantage of BT-FLEMO is the quantification of prediction uncertainty. The probability distribution of loss estimates by BT-FLEMO well represents the variation range of loss estimates of the other models in the case study.}, language = {en} } @misc{ThiekenKienzlerKreibichetal.2016, author = {Thieken, Annegret and Kienzler, Sarah and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and M{\"u}hr, Bernhard and M{\"u}ller, Meike and Otto, Antje and Petrow, Theresia and Pisi, Sebastian and Schr{\"o}ter, Kai}, title = {Review of the flood risk management system in Germany after the major flood in 2013}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100600}, pages = {12}, year = {2016}, abstract = {Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.}, language = {en} } @article{ThiekenKienzlerKreibichetal.2016, author = {Thieken, Annegret and Kienzler, Sarah and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and M{\"u}hr, Bernhard and M{\"u}ller, Meike and Otto, Antje and Petrow, Theresia and Pisi, Sebastian and Schr{\"o}ter, Kai}, title = {Review of the flood risk management system in Germany after the major flood in 2013}, series = {Ecology and society : E\&S ; a journal of integrative science for resilience and sustainability}, volume = {21}, journal = {Ecology and society : E\&S ; a journal of integrative science for resilience and sustainability}, number = {2}, publisher = {Resilience Alliance}, address = {Wolfville, NS}, issn = {1708-3087}, doi = {10.5751/ES-08547-210251}, pages = {12}, year = {2016}, abstract = {Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.}, language = {en} } @misc{ThiekenKienzlerKreibichetal.2016, author = {Thieken, Annegret and Kienzler, Sarah and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and Muehr, Bernhard and Mueller, Meike and Otto, Antje and Petrow, Theresia and Pisi, Sebastian and Schroeter, Kai}, title = {Review of the flood risk management system in Germany after the major flood in 2013}, series = {Ecology and society : a journal of integrative science for resilience and sustainability}, volume = {21}, journal = {Ecology and society : a journal of integrative science for resilience and sustainability}, publisher = {Resilience Alliance}, address = {Wolfville}, issn = {1708-3087}, doi = {10.5751/ES-08547-210251}, pages = {8612 -- 8614}, year = {2016}, abstract = {Widespread flooding in June 2013 caused damage costs of (sic)6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of (sic)11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.}, language = {en} } @article{DoThiChinhBubeckNguyenVietDungetal.2016, author = {Do Thi Chinh, and Bubeck, Philip and Nguyen Viet Dung, and Kreibich, Heidi}, title = {The 2011 flood event in the Mekong Delta: preparedness, response, damage and recovery of private households and small businesses}, series = {Disasters : the journal of disaster studies, policy and management}, volume = {40}, journal = {Disasters : the journal of disaster studies, policy and management}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0361-3666}, doi = {10.1111/disa.12171}, pages = {753 -- 778}, year = {2016}, abstract = {Floods frequently cause substantial economic and human losses, particularly in developing countries. For the development of sound flood risk management schemes that reduce flood consequences, detailed insights into the different components of the flood risk management cycle, such as preparedness, response, flood impact analyses and recovery, are needed. However, such detailed insights are often lacking: commonly, only (aggregated) data on direct flood damage are available. Other damage categories such as losses owing to the disruption of production processes are usually not considered, resulting in incomplete risk assessments and possibly inappropriate recommendations for risk management. In this paper, data from 858 face-to-face interviews among flood-prone households and small businesses in Can Tho city in the Vietnamese Mekong Delta are presented to gain better insights into the damage caused by the 2011 flood event and its management by households and businesses.}, language = {en} } @misc{ThiekenBesselKienzleretal.2016, author = {Thieken, Annegret and Bessel, Tina and Kienzler, Sarah and Kreibich, Heidi and M{\"u}ller, Meike and Pisi, Sebastian and Schr{\"o}ter, Kai}, title = {The flood of June 2013 in Germany}, series = {National Hazards Earth System Science}, journal = {National Hazards Earth System Science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97207}, pages = {21}, year = {2016}, abstract = {In June 2013, widespread flooding and consequent damage and losses occurred in Central Europe, especially in Germany. This paper explores what data are available to investigate the adverse impacts of the event, what kind of information can be retrieved from these data and how well data and information fulfil requirements that were recently proposed for disaster reporting on the European and international levels. In accordance with the European Floods Directive (2007/60/EC), impacts on human health, economic activities (and assets), cultural heritage and the environment are described on the national and sub-national scale. Information from governmental reports is complemented by communications on traffic disruptions and surveys of flood-affected residents and companies. Overall, the impacts of the flood event in 2013 were manifold. The study reveals that flood-affected residents suffered from a large range of impacts, among which mental health and supply problems were perceived more seriously than financial losses. The most frequent damage type among affected companies was business interruption. This demonstrates that the current scientific focus on direct (financial) damage is insufficient to describe the overall impacts and severity of flood events. The case further demonstrates that procedures and standards for impact data collection in Germany are widely missing. Present impact data in Germany are fragmentary, heterogeneous, incomplete and difficult to access. In order to fulfil, for example, the monitoring and reporting requirements of the Sendai Framework for Disaster Risk Reduction 2015-2030 that was adopted in March 2015 in Sendai, Japan, more efforts on impact data collection are needed.}, language = {en} } @article{ThiekenBesselKienzleretal.2016, author = {Thieken, Annegret and Bessel, Tina and Kienzler, Sarah and Kreibich, Heidi and M{\"u}ller, Meike and Pisi, Sebastian and Schr{\"o}ter, Kai}, title = {The flood of June 2013 in Germany}, series = {National Hazards Earth System Science}, journal = {National Hazards Earth System Science}, number = {16}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, doi = {10.5194/nhess-16-1519-2016}, pages = {1519 -- 1540}, year = {2016}, abstract = {In June 2013, widespread flooding and consequent damage and losses occurred in Central Europe, especially in Germany. This paper explores what data are available to investigate the adverse impacts of the event, what kind of information can be retrieved from these data and how well data and information fulfil requirements that were recently proposed for disaster reporting on the European and international levels. In accordance with the European Floods Directive (2007/60/EC), impacts on human health, economic activities (and assets), cultural heritage and the environment are described on the national and sub-national scale. Information from governmental reports is complemented by communications on traffic disruptions and surveys of flood-affected residents and companies. Overall, the impacts of the flood event in 2013 were manifold. The study reveals that flood-affected residents suffered from a large range of impacts, among which mental health and supply problems were perceived more seriously than financial losses. The most frequent damage type among affected companies was business interruption. This demonstrates that the current scientific focus on direct (financial) damage is insufficient to describe the overall impacts and severity of flood events. The case further demonstrates that procedures and standards for impact data collection in Germany are widely missing. Present impact data in Germany are fragmentary, heterogeneous, incomplete and difficult to access. In order to fulfil, for example, the monitoring and reporting requirements of the Sendai Framework for Disaster Risk Reduction 2015-2030 that was adopted in March 2015 in Sendai, Japan, more efforts on impact data collection are needed.}, language = {en} }