@misc{WessigHilleKumkeetal.2016, author = {Wessig, Pablo and Hille, Carsten and Kumke, Michael Uwe and Meiling, Till Thomas and Behrends, Nicole and Eisold, Ursula}, title = {Two-photon FRET pairs based on coumarin and DBD dyes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394445}, pages = {33510 -- 33513}, year = {2016}, abstract = {The synthesis and photophysical properties of two new FRET pairs based on coumarin as a donor and DBD dye as an acceptor are described. The introduction of a bromo atom dramatically increases the two-photon excitation (2PE) cross section providing a 2PE-FRET system, which is also suitable for 2PE-FLIM.}, language = {en} } @article{WessigBehrendsKumkeetal.2016, author = {Wessig, Pablo and Behrends, Nicole and Kumke, Michael Uwe and Eisold, Ursula and Meiling, Til and Hille, Carsten}, title = {Two-photon FRET pairs based on coumarin and DBD dyes}, series = {RSC Advances}, volume = {6}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c6ra03983a}, pages = {33510 -- 33513}, year = {2016}, abstract = {The synthesis and photophysical properties of two new FRET pairs based on coumarin as a donor and DBD dye as an acceptor are described. The introduction of a bromo atom dramatically increases the two-photon excitation (2PE) cross section providing a 2PE-FRET system, which is also suitable for 2PE-FLIM.}, language = {en} } @article{WessigBehrendsKumkeetal.2016, author = {Wessig, Pablo and Behrends, Nicole and Kumke, Michael Uwe and Eisold, Ursula}, title = {FRET Pairs with Fixed Relative Orientation of Chromophores}, series = {European journal of organic chemistry}, volume = {145}, journal = {European journal of organic chemistry}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201600489}, pages = {4476 -- 4486}, year = {2016}, abstract = {Synthetic routes to different oligospirothioketal (OSTK) Forster resonance energy transfer (FRET) constructs are described and the photophysics of these constructs were explored in different solvents. The FRET efficiencies were determined from the experimental data and compared with theoretical values. The influence of the outstanding rigidity of the novel OSTK compounds on the FRET is discussed.}, language = {en} } @article{EisoldBehrendsWessigetal.2016, author = {Eisold, Ursula and Behrends, Nicole and Wessig, Pablo and Kumke, Michael Uwe}, title = {Rigid Rod-Based FRET Probes for Membrane Sensing Applications}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {120}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.6b07285}, pages = {9935 -- 9943}, year = {2016}, abstract = {Oligospirothioketal (OSTK) rods are presented as an adjustable scaffold for optical membrane probes. The OSTK rods are readily incorporated into lipid bilayers due to their hydrophobic backbones. Because of their high length-over-diameter aspect ratio, only a minimal disturbance of the lipid bilayer is caused. OSTK rods show outstanding rigidity and allow defined labeling with fluorescent dyes, yielding full control of the orientation between the dye and OSTK skeleton. This. allows the construction of novel Forster resonance energy transfer probes with highly defined relative orientations of the transition dipole moments of the donor and acceptor dyes and makes the class of OSTK probes a power-fill, flexible toolbox for optical biosensing applications. Data on steady-state and time-resolved fluorescence experiments investigating the incorporation of coumarin- and [1,3]-dioxolo[4,5-f][1,3]benzo-dioxole-labeled OSTKs in large unilamellar vesicles are presented as a show case.}, language = {en} }