@misc{WangHuangSachseetal.2016, author = {Wang, Xinxin and Huang, Xianyu and Sachse, Dirk and Ding, Weihua and Xue, Jiantao}, title = {Molecular paleoclimate reconstructions over the last 9 ka from a peat sequence in South China}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {543}, issn = {1866-8372}, doi = {10.25932/publishup-41160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411608}, pages = {15}, year = {2016}, abstract = {To achieve a better understanding of Holocene climate change in the monsoon regions of China, we investigated the molecular distributions and carbon and hydrogen isotope compositions delta C-13 and delta D values) of long-chain n-alkanes in a peat core from the Shiwangutian SWGT) peatland, south China over the last 9 ka. By comparisons with other climate records, we found that the delta C-13 values of the long-chain n-alkanes can be a proxy for humidity, while the dD values of the long-chain n-alkanes primarily recorded the moisture source dD signal during 9-1.8 ka BP and responded to the dry climate during 1.8-0.3 ka BP. Together with the average chain length ACL) and the carbon preference index CPI) data, the climate evolution over last 9 ka in the SWGT peatland can be divided into three stages. During the first stage 9-5 ka BP), the delta C-13 values were depleted and CPI and Paq values were low, while ACL values were high. They reveal a period of warm and wet climate, which is regarded as the Holocene optimum. The second stage 5-1.8 ka BP) witnessed a shift to relatively cool and dry climate, as indicated by the more positive delta C-13 values and lower ACL values. During the third stage 1.8-0.3 ka BP), the delta C-13, delta D, CPI and Paq values showed marked increase and ACL values varied greatly, implying an abrupt change to cold and dry conditions. This climate pattern corresponds to the broad decline in Asian monsoon intensity through the latter part of the Holocene. Our results do not support a later Holocene optimum in south China as suggested by previous studies.}, language = {en} }