@article{LischkeWeithoffWickhametal.2016, author = {Lischke, Betty and Weithoff, Guntram and Wickham, Stephen A. and Attermeyer, Katrin and Großart, Hans-Peter and Scharnweber, Inga Kristin and Hilt, Sabine and Gaedke, Ursula}, title = {Large biomass of small feeders: ciliates may dominate herbivory in eutrophic lakes}, series = {Journal of plankton research}, volume = {38}, journal = {Journal of plankton research}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbv102}, pages = {2 -- 15}, year = {2016}, abstract = {The importance of ciliates as herbivores and in biogeochemical cycles is increasingly recognized. An opportunity to observe the potential consequences of zooplankton dominated by ciliates arose when winter fish kills resulted in strong suppression of crustaceans by young planktivorous fish in two shallow lakes. On an annual average, ciliates made up 38-76\% of the total zooplankton biomass in both lakes during two subsequent years. Consequently, ciliate biomass and their estimated grazing potential were extremely high compared with other lakes of various trophic states and depths. Grazing estimates based on abundance and size suggest that ciliates should have cleared the water column of small (<5 mu m) and intermediate (5-50 mu m) sized phytoplankton more than once a day. Especially, small feeders within the ciliates were important, likely exerting a strong top-down control on small phytoplankton. Particle-attached bacteria were presumably strongly suppressed by intermediate-sized ciliate feeders. In contrast to other lakes, large phytoplankton was proportionately very abundant. The phytoplankton community had a high evenness, which may be attributed to the feeding by numerous fast growing and selective ciliate species. Our study highlights ciliates as an important trophic link and adds to the growing awareness of the role of winter processes for plankton dynamics.}, language = {en} } @article{WurzbacherWarthmannBourneetal.2016, author = {Wurzbacher, Christian and Warthmann, Norman and Bourne, Elizabeth Charlotte and Attermeyer, Katrin and Allgaier, Martin and Powell, Jeff R. and Detering, Harald and Mbedi, Susan and Großart, Hans-Peter and Monaghan, Michael T.}, title = {High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany)}, series = {MycoKeys}, volume = {41}, journal = {MycoKeys}, publisher = {Pensoft Publ.}, address = {Sofia}, issn = {1314-4057}, doi = {10.3897/mycokeys.16.9646}, pages = {17 -- 44}, year = {2016}, abstract = {Freshwater fungi are a poorly studied ecological group that includes a high taxonomic diversity. Most studies on aquatic fungal diversity have focused on single habitats, thus the linkage between habitat heterogeneity and fungal diversity remains largely unexplored. We took 216 samples from 54 locations representing eight different habitats in the meso-oligotrophic, temperate Lake Stechlin in North-East Germany. These included the pelagic and littoral water column, sediments, and biotic substrates. We performed high throughput sequencing using the Roche 454 platform, employing a universal eukaryotic marker region within the large ribosomal subunit (LSU) to compare fungal diversity, community structure, and species turnover among habitats. Our analysis recovered 1027 fungal OTUs (97\% sequence similarity). Richness estimates were highest in the sediment, biofilms, and benthic samples (189-231 OTUs), intermediate in water samples (42-85 OTUs), and lowest in plankton samples (8 OTUs). NMDS grouped the eight studied habitats into six clusters, indicating that community composition was strongly influenced by turnover among habitats. Fungal communities exhibited changes at the phylum and order levels along three different substrate categories from littoral to pelagic habitats. The large majority of OTUs (> 75\%) could not be classified below the order level due to the lack of aquatic fungal entries in public sequence databases. Our study provides a first estimate of lake-wide fungal diversity and highlights the important contribution of habitat heterogeneity to overall diversity and community composition. Habitat diversity should be considered in any sampling strategy aiming to assess the fungal diversity of a water body.}, language = {en} } @article{MehnerAttermeyerBraunsetal.2016, author = {Mehner, T. and Attermeyer, Katrin and Brauns, Mario and Brothers, Soren M. and Diekmann, J. and Gaedke, Ursula and Grossart, Hans-Peter and Koehler, J. and Lischke, Betty and Meyer, N. and Scharnweber, Inga Kristin and Syvaranta, J. and Vanni, M. J. and Hilt, S.}, title = {Weak Response of Animal Allochthony and Production to Enhanced Supply of Terrestrial Leaf Litter in Nutrient-Rich Lakes}, series = {Ecosystems}, volume = {19}, journal = {Ecosystems}, publisher = {Springer}, address = {New York}, issn = {1432-9840}, doi = {10.1007/s10021-015-9933-2}, pages = {311 -- 325}, year = {2016}, abstract = {Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27-40\%, although terrestrial POC contributed less than about 10\% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5\% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs.}, language = {en} } @article{PremkeAttermeyerAugustinetal.2016, author = {Premke, Katrin and Attermeyer, Katrin and Augustin, J{\"u}rgen and Cabezas, Alvaro and Casper, Peter and Deumlich, Detlef and Gelbrecht, J{\"o}rg and Gerke, Horst H. and Gessler, Arthur and Großart, Hans-Peter and Hilt, Sabine and Hupfer, Michael and Kalettka, Thomas and Kayler, Zachary and Lischeid, Gunnar and Sommer, Michael and Zak, Dominik}, title = {The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters}, series = {Wiley Interdisciplinary Reviews : Water}, volume = {3}, journal = {Wiley Interdisciplinary Reviews : Water}, publisher = {Wiley}, address = {Hoboken}, issn = {2049-1948}, doi = {10.1002/wat2.1147}, pages = {601 -- 617}, year = {2016}, abstract = {Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and between both landscape components. Here, we compiled data from the literature on C fluxes across the air-water interface from various landscape components. We simulated C emissions and uptake for five different scenarios which represent a gradient of increasing spatial heterogeneity within a temperate young moraine landscape: (I) a homogeneous landscape with only cropland and large lakes; (II) separation of the terrestrial domain into cropland and forest; (III) further separation into cropland, forest, and grassland; (IV) additional division of the aquatic area into large lakes and peatlands; and (V) further separation of the aquatic area into large lakes, peatlands, running waters, and small water bodies These simulations suggest that C fluxes at the landscape scale might depend on spatial heterogeneity and landscape diversity, among other factors. When we consider spatial heterogeneity and diversity alone, small inland waters appear to play a pivotal and previously underestimated role in landscape greenhouse gas emissions that may be regarded as C hot spots. Approaches focusing on the landscape scale will also enable improved projections of ecosystems' responses to perturbations, e.g., due to global change and anthropogenic activities, and evaluations of the specific role individual landscape components play in regional C fluxes. WIREs Water 2016, 3:601-617. doi: 10.1002/wat2.1147}, language = {en} }