@article{PinyouRuffPoelleretal.2016, author = {Pinyou, Piyanut and Ruff, Adrian and Poeller, Sascha and Alsaoub, Sabine and Leimk{\"u}hler, Silke and Wollenberger, Ursula and Schuhmann, Wolfgang}, title = {Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers}, series = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, volume = {109}, journal = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, publisher = {Elsevier}, address = {Lausanne}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2015.12.005}, pages = {24 -- 30}, year = {2016}, abstract = {Phenothiazine-modified redox hydrogels were synthesized and used for the wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces. The effects of the pH value and electrode surface modification on the biocatalytic activity of the layers were studied in the presence of vanillin as the substrate. The enzyme electrodes were successfully employed as bioanodes in vanillin/O-2 biofuel cells in combination with a high potential bilirubin oxidase biocathode. Open circuit voltages of around 700 mV could be obtained in a two compartment biofuel cell setup. Moreover, the use of a rather hydrophobic polymer with a high degree of crosslinking sites ensures the formation of stable polymer/enzyme films which were successfully used as bioanode in membrane-less biofuel cells. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{PinyouRuffPoelleretal.2016, author = {Pinyou, Piyanut and Ruff, Adrian and Poeller, Sascha and Barwe, Stefan and Nebel, Michaela and Alburquerque, Natalia Guerrero and Wischerhoff, Erik and Laschewsky, Andre and Schmaderer, Sebastian and Szeponik, Jan and Plumere, Nicolas and Schuhmann, Wolfgang}, title = {Thermoresponsive amperometric glucose biosensor}, series = {Biointerphases}, volume = {11}, journal = {Biointerphases}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1934-8630}, doi = {10.1116/1.4938382}, pages = {7}, year = {2016}, abstract = {The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(omega-ethoxytriethylenglycol methacrylate-omega-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-omega-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 degrees C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol) methacrylate-co-butyl acrylate-co-2-(dimethylamino) ethyl methacrylate)-[Os(bpy)(2)(4-(((2-(2-(2-aminoethoxy) ethoxy) ethyl) amino) methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on-to an off-state without heating of the surrounding analyte solution. (C) 2015 American Vacuum Society.}, language = {en} }