@article{Qiu2016, author = {Qiu, Xunlin}, title = {Significant enhancement of the charging efficiency in the cavities of ferroelectrets through gas exchange during charging}, series = {Applied physics letters}, volume = {109}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4971259}, pages = {2543 -- 2555}, year = {2016}, abstract = {Ferroelectrets are non-polar polymer foams or polymer systems with internally charged cavities. They are charged through a series of dielectric barrier discharges (DBDs) that are caused by the electrical breakdown of the gas inside the cavities. Thus, the breakdown strength of the gas strongly influences the charging process of ferroelectrets. A gas with a lower breakdown strength has a lower threshold voltage, thus decreasing the onset voltage for DBD charging. However, a lower threshold voltage also leads to a lower value for the remanent polarization, as back discharges that are caused by the electric field of the internally deposited charges can take place already at lower charge levels. On this basis, a charging strategy is proposed where the DBDs start in a gas with a lower breakdown strength (in the present example, helium) and are completed at a higher breakdown strength (e.g., nitrogen or atmospheric air). Thus, the exchange of the gas in the cavities during charging can significantly enhance the charging efficiency, i.e., yield much higher piezoelectric coefficients in ferroelectrets at significantly lower charging voltages. Published by AIP Publishing.}, language = {en} } @article{QiuWirgesGerhard2016, author = {Qiu, Xunlin and Wirges, Werner and Gerhard, Reimund}, title = {Thermal poling of ferroelectrets: How does the gas temperature influence dielectric barrier discharges in cavities?}, series = {Applied physics letters}, volume = {108}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4954263}, pages = {1687 -- 1697}, year = {2016}, abstract = {The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature TP. With increasing TP, the threshold voltage for triggering dielectric barrier discharges in ferroelectrets decreases. Thus, increasing the temperature facilitates the charging of ferroelectrets. However, a lower threshold voltage reduces the attainable remanent polarization because back discharges occur at lower charge levels, as soon as the charging voltage is turned off. The results are discussed in view of Paschen's law for electrical breakdown, taking into account the respective gas temperature and a simplified model for ferroelectrets. Our results indicate that the thermal poling scheme widely used for conventional ferroelectrics is also useful for electrically charging ferroelectrets. Ferroelectrets (sometimes also called piezoelectrets) are relatively new members of the family of piezo-, pyro-, and ferroelectric materials.1-5 As their name indicates, ferroelectrets are space-charge electrets that show ferroic behavior. They are non-uniform electret materials or materials systems with electrically charged internal cavities. As space-charge electrets, ferroelectrets usually do not contain any molecular dipoles. However, the cavities inside the material can be turned into macroscopic dipoles through a series of micro-plasma discharges at high electric fields, so-called dielectric barrier discharges (DBDs).6-8 The gas inside the cavities is ionized when the internal electric field exceeds the threshold for electrical breakdown, generating charges of both polarities.9 The positive and negative charges travel in opposite directions, and are eventually trapped at the internal top and bottom surfaces of the cavities, respectively. After charging, the cavities may be regarded as macroscopic dipoles that can be switched by reversing the applied voltage. An electric-polarization-vs.-electric-field (P(E)) hysteresis is considered as an essential criterion for ferroelectricity. P(E)-hysteresis curves are usually characterized by the spontaneous polarization, the coercive field, and the remanent polarization. Recently, we have demonstrated P(E)-hysteresis loops on two different types of ferroelectrets, namely, cellular polypropylene ferroelectrets and tubular-channel fluoroethylene-polypropylene copolymer ferroelectrets.10,11 The P(E)-hysteresis loops not only prove the ferroic behavior of ferroelectrets, but also allow us to determine such parameters as the coercive field and the remanent polarization. It is widely accepted that Paschen breakdown is the underlying mechanism for the inception of DBDs in ferroelectrets.12-14 On this basis, the charging behavior and the resulting piezoelectricity of ferroelectrets in different gases at various pressures have been studied.15-17 Paschen's law describes the conditions for electrical breakdown in a gas at a constant temperature (usually room temperature), and it needs to be modified for gas breakdown at other temperatures. The temperature stability of the piezoelectricity in ferroelectrets after charging at elevated temperatures was investigated by several researchers.18-21 Recently, a preliminary report about the effects of the charging temperature on the hysteresis loops in ferroelectrets has been presented.22 In this letter, the influence of the gas temperature on the charging of ferroelectret systems is investigated in more detail by means of quasi-ferroelectric hysteresis-loop measurements. Teflon™ fluoroethylenepropylene (FEP) copolymer samples with tubular channels were prepared via thermal lamination as described previously.23 To this end, two FEP films with a thickness of 50 \&\#956;m each were laminated at 300 ° C around a 100 \&\#956;m thick polytetrafluoroethylene (PTFE) template (total area 35 mm × 45 mm) that contains parallel rectangular openings (area 1.5 mm × 40 mm each). After lamination, the template was removed, which results in an FEP film system with open tubular channels. The samples were metallized on both surfaces with aluminum electrodes of 20 mm diameter. P(E)-hysteresis loops were obtained with a modified Sawyer-Tower (ST) circuit.10,11 A high-voltage (HV) capacitor C1 (3 nF) and a large standard capacitor Cm (1 \&\#956;F) were connected in series with the sample. A bipolar sinusoidal voltage with a frequency of 10 mHz was applied from an HV power supply (FUG HCB 7-6500) controlled by an arbitrary-waveform generator (HP 33120a). The voltage Vout on Cm is measured by means of an electrometer (HP 3458a), and the charge flowing through the circuit is determined as Q(t)=CmVout(t) . The experiments were carried out at isothermal conditions in a Novocontrol® Quatro cryosystem. With the modified ST circuit, Q-V loops have been measured on a tubular-channel FEP ferroelectret system at different temperatures. The sample capacitance of about 34.5 pF is determined by a linear fit of the initial part of the Q-V curve recorded at 20 °C , where the voltage has been raised up from zero on a fresh sample. The hysteresis loops are obtained from the Q-V curves by subtracting the contribution that results from charging of the sample capacitance.10 Figure 1 shows the hysteresis loops of the sample at \&\#8722;100, 0, and +100 ° C, respectively. According to previous theoretical and experimental studies,24,25 the length of each of the horizontal sides of the parallelogram-like hysteresis loops is given by 2Vth where Vth is the threshold voltage. As the charging temperature decreases, the hysteresis loop becomes wider and less high, i.e., the threshold voltage increases, while the polarization at maximum voltage decreases.}, language = {en} }