@article{HocherHaumannRahnenfuehreretal.2016, author = {Hocher, Berthold and Haumann, Hannah and Rahnenf{\"u}hrer, Jan and Reichetzeder, Christoph and Kalk, Philipp and Pfab, Thiemo and Tsuprykov, Oleg and Winter, Stefan and Hofmann, Ute and Li, Jian and P{\"u}schel, Gerhard Paul and Lang, Florian and Schuppan, Detlef and Schwab, Matthias and Schaeffeler, Elke}, title = {Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner}, series = {Epigenetics : the official journal of the DNA Methylation Society}, volume = {11}, journal = {Epigenetics : the official journal of the DNA Methylation Society}, publisher = {Routledge, Taylor \& Francis Group}, address = {Philadelphia}, issn = {1559-2294}, doi = {10.1080/15592294.2016.1184800}, pages = {539 -- 552}, year = {2016}, abstract = {Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood.}, language = {en} } @article{LiLuReichetzederetal.2016, author = {Li, Jian and Lu, Yong Ping and Reichetzeder, Christoph and Kalk, Philipp and Kleuser, Burkhard and Adamski, Jerzy and Hocher, Berthold}, title = {Maternal PCaaC38:6 is Associated With Preterm Birth - a Risk Factor for Early and Late Adverse Outcome of the Offspring}, series = {Journal of European public policy}, volume = {41}, journal = {Journal of European public policy}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000443428}, pages = {250 -- 257}, year = {2016}, abstract = {Background/Aims: Preterm birth (PTB) and low birth weight (LBW) significantly influence mortality and morbidity of the offspring in early life and also have long-term consequences in later life. A better understanding of the molecular mechanisms of preterm birth could provide new insights regarding putative preventive strategies. Metabolomics provides a powerful analytic tool to readout complex interactions between genetics, environment and health and may serve to identify relevant biomarkers. In this study, the association between 163 targeted maternal blood metabolites and gestational age was investigated in order to find candidate biomarkers for PTB. Methods: Five hundred twenty-three women were included into this observational study. Maternal blood was obtained before delivery. The concentration of 163 maternal serum metabolites was measured by flow injection tandem mass spectrometry. To find putative biomarkers for preterm birth, a three-step analysis was designed: bivariate correlation analysis followed by multivariable regression analysis and a comparison of mean values among gestational age groups. Results: Bivariate correlation analysis showed that 2 acylcarnitines (C16:2, C2), 1 amino acids (xLeu), 8 diacyl-PCs (PCaaC36:4, PCaaC38:4, PCaaC38:5, PCaaC38:6, PCaaC40:4, PCaaC40:5, PCaaC40:6, PCaaC42:4), and 1 Acylalkyl-PCs (PCaeC40:5) were inversely correlated with gestational age. Multivariable regression analysis confounded for PTB history, maternal body mass index (BMI) before pregnancy, systolic blood pressure at the third trimester, and maternal body weight at the third trimester, showed that the diacyl-PC PCaaC38:6 was the only metabolite inversely correlated with gestational age. Conclusions: Maternal blood concentrations of PCaaC38:6 are independently associated with gestational age. (C) 2016 The Author(s) Published by S. Karger AG, Basel}, language = {en} }