@article{TurjemanCentenoCuadrosEggersetal.2016, author = {Turjeman, Sondra Feldman and Centeno-Cuadros, Alejandro and Eggers, Ute and Rotics, Shay and Blas, Julio and Fiedler, Wolfgang and Kaatz, Michael and Jeltsch, Florian and Wikelski, Martin and Nathan, Ran}, title = {Extra-pair paternity in the socially monogamous white stork (Ciconia ciconia) is fairly common and independent of local density}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep27976}, pages = {9}, year = {2016}, abstract = {Although many birds are socially monogamous, most (>75\%) studied species are not strictly genetically monogamous, especially under high breeding density. We used molecular tools to reevaluate the reproductive strategy of the socially monogamous white stork (Ciconia ciconia) and examined local density effects. DNA samples of nestlings (Germany, Spain) were genotyped and assigned relationships using a two-program maximum likelihood classification. Relationships were successfully classified in 79.2\% of German (n = 120) and 84.8\% of Spanish (n = 59) nests. For each population respectively, 76.8\% (n = 73) and 66.0\% (n = 33) of nests contained only full-siblings, 10.5\% (n = 10) and 18.0\% (n = 9) had half-siblings (at least one nestling with a different parent), 3.2\% (n = 3) and 10.0\% (n = 5) had unrelated nestlings (at least two nestlings, each with different parents), and 9.5\% (n = 9) and 6.0\% (n = 3) had "not full-siblings" (could not differentiate between latter two cases). These deviations from strict monogamy place the white stork in the 59th percentile for extra-pair paternity among studied bird species. Although high breeding density generally increases extra-pair paternity, we found no significant association with this species' mating strategies. Thus although genetic monogamy is indeed prominent in the white stork, extra-pair paternity is fairly common compared to other bird species and cannot be explained by breeding density.}, language = {en} } @article{RoticsKaatzResheffetal.2016, author = {Rotics, Shay and Kaatz, Michael and Resheff, Yehezkel S. and Turjeman, Sondra Feldman and Zurell, Damaris and Sapir, Nir and Eggers, Ute and Flack, Andrea and Fiedler, Wolfgang and Jeltsch, Florian and Wikelski, Martin and Nathan, Ran}, title = {The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality}, series = {Journal of animal ecology : a journal of the British Ecological Society}, volume = {85}, journal = {Journal of animal ecology : a journal of the British Ecological Society}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8790}, doi = {10.1111/1365-2656.12525}, pages = {938 -- 947}, year = {2016}, abstract = {1. Migration conveys an immense challenge, especially for juvenile birds coping with enduring and risky journeys shortly after fledging. Accordingly, juveniles exhibit considerably lower survival rates compared to adults, particularly during migration. Juvenile white storks (Ciconia ciconia), which are known to rely on adults during their first fall migration presumably for navigational purposes, also display much lower annual survival than adults. 2. Using detailed GPS and body acceleration data, we examined the patterns and potential causes of age-related differences in fall migration properties of white storks by comparing first-year juveniles and adults. We compared juvenile and adult parameters of movement, behaviour and energy expenditure (estimated from overall dynamic body acceleration) and placed this in the context of the juveniles' lower survival rate. 3. Juveniles used flapping flight vs. soaring flight 23\% more than adults and were estimated to expend 14\% more energy during flight. Juveniles did not compensate for their higher flight costs by increased refuelling or resting during migration. When juveniles and adults migrated together in the same flock, the juvenile flew mostly behind the adult and was left behind when they separated. Juveniles showed greater improvement in flight efficiency throughout migration compared to adults which appears crucial because juveniles exhibiting higher flight costs suffered increased mortality. 4. Our findings demonstrate the conflict between the juveniles' inferior flight skills and their urge to keep up with mixed adult-juvenile flocks. We suggest that increased flight costs are an important proximate cause of juvenile mortality in white storks and likely in other soaring migrants and that natural selection is operating on juvenile variation in flight efficiency.}, language = {en} }