@article{ParkWaltaRosencrantzetal.2016, author = {Park, H. and Walta, S. and Rosencrantz, Ruben R. and Koerner, A. and Schulte, Christoph and Elling, L. and Richtering, Walter and B{\"o}ker, Alexander}, title = {Micelles from self-assembled double-hydrophilic PHEMA-glycopolymer-diblock copolymers as multivalent scaffolds for lectin binding}, series = {Polymer Chemistry}, volume = {7}, journal = {Polymer Chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c5py00797f}, pages = {878 -- 886}, year = {2016}, abstract = {We introduce a novel double-hydrophilic hydroxyethylmethacrylate (HEMA) based diblock glycopolymer which self-assembles into homogeneous spherical micellar structures in water. The micellar structure renders surface-oriented N-acetylglucocosamine (GlcNAc) sugar moieties for strong multivalent glycan-mediated lectin binding. Structural analysis and lectin binding is performed by microscopy methods, dynamic light scattering (DLS) and two-focus fluorescence correlation spectroscopy (2fFCS), revealing a novel micellar type of multivalent sugar binding scaffold with high potential for biomedical applications.}, language = {en} } @article{RosencrantzVuHoaNguyenParketal.2016, author = {Rosencrantz, Ruben R. and Vu Hoa Nguyen, and Park, Hyunji and Schulte, Christine and B{\"o}ker, Alexander and Schnakenberg, Uwe and Elling, Lothar}, title = {Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis}, volume = {408}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-016-9667-9}, pages = {5633 -- 5640}, year = {2016}, abstract = {A localized surface plasmon resonance biosensor in a flow-through configuration was applied for investigating kinetics of lectin binding to surface-grafted glycopolymer brushes. Polycarbonate filter membranes with pore sizes of 400 nm were coated with a 114-nm thick gold layer and used as substrate for surface-initiated atom-transfer radical polymerization of a glycomonomer. These grafted from glycopolymer brushes were further modified with two subsequent enzymatic reactions on the surface to yield an immobilized trisaccharide presenting brush. Specific binding of lectins including Clostridium difficile toxin A receptor domain to the glycopolymer brush surface could be investigated in a microfluidic setup with flow-through of the analytes and transmission surface plasmon resonance spectroscopy.}, language = {en} }