@misc{VolckmarHanPuetteretal.2016, author = {Volckmar, Anna-Lena and Han, Chung-Ting and P{\"u}tter, Carolin and Haas, Stefan and Vogel, Carla I. G. and Knoll, Nadja and Struve, Christoph and G{\"o}bel, Maria and Haas, Katharina and Herrfurth, Nikolas and Jarick, Ivonne and Grallert, Harald and Sch{\"u}rmann, Annette and Al- Hasani, Hadi and Hebebrand, Johannes and Sauer, Sascha and Hinney, Anke}, title = {Analysis of genes involved in body weight regulation by targeted re-sequencing}, series = {PLoS ONE}, journal = {PLoS ONE}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410289}, pages = {16}, year = {2016}, abstract = {Introduction Genes involved in body weight regulation that were previously investigated in genome-wide association studies (GWAS) and in animal models were target-enriched followed by massive parallel next generation sequencing. Methods We enriched and re-sequenced continuous genomic regions comprising FTO, MC4R, TMEM18, SDCCAG8, TKNS, MSRA and TBC1D1 in a screening sample of 196 extremely obese children and adolescents with age and sex specific body mass index (BMI) >= 99th percentile and 176 lean adults (BMI <= 15th percentile). 22 variants were confirmed by Sanger sequencing. Genotyping was performed in up to 705 independent obesity trios (extremely obese child and both parents), 243 extremely obese cases and 261 lean adults. Results and Conclusion We detected 20 different non-synonymous variants, one frame shift and one nonsense mutation in the 7 continuous genomic regions in study groups of different weight extremes. For SNP Arg695Cys (rs58983546) in TBC1D1 we detected nominal association with obesity (p(TDT) = 0.03 in 705 trios). Eleven of the variants were rare, thus were only detected heterozygously in up to ten individual(s) of the complete screening sample of 372 individuals. Two of them (in FTO and MSRA) were found in lean individuals, nine in extremely obese. In silico analyses of the 11 variants did not reveal functional implications for the mutations. Concordant with our hypothesis we detected a rare variant that potentially leads to loss of FTO function in a lean individual. For TBC1D1, in contrary to our hypothesis, the loss of function variant (Arg443Stop) was found in an obese individual. Functional in vitro studies are warranted.}, language = {en} } @article{CuiSchlesingerSchoenhalsetal.2016, author = {Cui, Huanhuan and Schlesinger, Jenny and Schoenhals, Sophia and Toenjes, Martje and Dunkel, Ilona and Meierhofer, David and Cano, Elena and Schulz, Kerstin and Berger, Michael F. and Haack, Timm and Abdelilah-Seyfried, Salim and Bulyk, Martha L. and Sauer, Sascha and Sperling, Silke R.}, title = {Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA}, series = {Nucleic acids research}, volume = {44}, journal = {Nucleic acids research}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-1048}, doi = {10.1093/nar/gkv1244}, pages = {2538 -- 2553}, year = {2016}, abstract = {DPF3 (BAF45c) is a member of the BAF chromatin remodeling complex. Two isoforms have been described, namely DPF3a and DPF3b. The latter binds to acetylated and methylated lysine residues of histones. Here, we elaborate on the role of DPF3a and describe a novel pathway of cardiac gene transcription leading to pathological cardiac hypertrophy. Upon hypertrophic stimuli, casein kinase 2 phosphorylates DPF3a at serine 348. This initiates the interaction of DPF3a with the transcriptional repressors HEY, followed by the release of HEY from the DNA. Moreover, BRG1 is bound by DPF3a, and is thus recruited to HEY genomic targets upon interaction of the two components. Consequently, the transcription of downstream targets such as NPPA and GATA4 is initiated and pathological cardiac hypertrophy is established. In human, DPF3a is significantly up-regulated in hypertrophic hearts of patients with hypertrophic cardiomyopathy or aortic stenosis. Taken together, we show that activation of DPF3a upon hypertrophic stimuli switches cardiac fetal gene expression from being silenced by HEY to being activated by BRG1. Thus, we present a novel pathway for pathological cardiac hypertrophy, whose inhibition is a long-term therapeutic goal for the treatment of the course of heart failure.}, language = {en} }