@misc{WippertPuschmannSchiltenwolfetal.2016, author = {Wippert, Pia-Maria and Puschmann, Anne-Katrin and Schiltenwolf, Marcus and Wiebking, Christine and Mayer, Frank}, title = {BACK PAIN: THE STUDY OF MECHANISMS AND THE TRANSLATION IN INTERVENTIONS WITHIN THE MISPEX NETWORK}, series = {Psychosomatic medicine}, volume = {78}, journal = {Psychosomatic medicine}, publisher = {Elsevier}, address = {Philadelphia}, issn = {0033-3174}, pages = {A91 -- A91}, year = {2016}, language = {en} } @article{MartinezValdesLaineFallaetal.2016, author = {Martinez-Valdes, Eduardo Andr{\´e}s and Laine, C. M. and Falla, D. and Mayer, Frank and Farina, D.}, title = {High-density surface electromyography provides reliable estimates of motor unit behavior}, series = {Clinical neurophysiology}, volume = {127}, journal = {Clinical neurophysiology}, publisher = {Elsevier}, address = {Clare}, issn = {1388-2457}, doi = {10.1016/j.clinph.2015.10.065}, pages = {2534 -- 2541}, year = {2016}, abstract = {Objective: To assess the intra-and inter-session reliability of estimates of motor unit behavior and muscle fiber properties derived from high-density surface electromyography (HDEMG). Methods: Ten healthy subjects performed submaximal isometric knee extensions during three recording sessions (separate days) at 10\%, 30\%, 50\% and 70\% of their maximum voluntary effort. The discharge timings of motor units of the vastus lateralis and medialis muscles were automatically identified from HDEMG by a decomposition algorithm. We characterized the number of detected motor units, their discharge rates, the coefficient of variation of their inter-spike intervals (CoVisi), the action potential conduction velocity and peak-to-peak amplitude. Reliability was assessed for each motor unit characteristics by intra-class correlation coefficient (ICC). Additionally, a pulse-to-noise ratio (PNR) was calculated, to verify the accuracy of the decomposition. Results: Good to excellent reliability within and between sessions was found for all motor unit characteristics at all force levels (ICCs > 0.8), with the exception of CoVisi that presented poor reliability (ICC < 0.6). PNR was high and similar for both muscles with values ranging between 45.1 and 47.6 dB (accuracy > 95\%). Conclusion: Motor unit features can be assessed non-invasively and reliably within and across sessions over a wide range of force levels. Significance: These results suggest that it is possible to characterize motor units in longitudinal intervention studies. (C) 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.}, language = {en} } @misc{MartinezValdesNegroLaineetal.2016, author = {Martinez-Valdes, Eduardo and Negro, Francesco and Laine, Christopher M. and Falla, Deborah L. and Mayer, Frank and Farina, Dario}, title = {Identifying motor units in longitudinal studies with high-density surface electromyography}, series = {Converging clinical and engineering research on neurorehabilitation II}, volume = {15}, journal = {Converging clinical and engineering research on neurorehabilitation II}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-46669-9}, issn = {2195-3562}, doi = {10.1007/978-3-319-46669-9_27}, pages = {147 -- 151}, year = {2016}, abstract = {We investigated the possibility to identify motor units (MUs) with high-density surface electromyography (HDEMG) over experimental sessions in different days. 10 subjects performed submaximal knee extensions across three sessions in three days separated by one week, while EMG was recorded from the vastus medialis muscle with high-density electrode grids. The shapes of the MU action potentials (MUAPs) over multiple channels extracted from HDEMG decomposition were matched across sessions by cross-correlation. Forty and twenty percent of the MUs decomposed could be tracked across two and three sessions, respectively (average cross correlation 0.85 +/- 0.04). The estimated properties of the matched motor units were similar across the sessions. For example, mean discharge rate and recruitment thresholds were measured with an intra-class correlation coefficient (ICCs) > 0.80. These results strongly suggest that the same MUs were indeed identified across sessions. This possibility will allow monitoring changes in MU properties following interventions or during the progression of neuromuscular disorders.}, language = {en} } @article{MuellerMuellerStolletal.2016, author = {M{\"u}ller, Steffen and M{\"u}ller, Juliane and Stoll, Josefine and Prieske, Olaf and Cassel, Michael and Mayer, Frank}, title = {Incidence of back pain in adolescent athletes}, series = {BMC sports science, medicine \& rehabilitation}, volume = {8}, journal = {BMC sports science, medicine \& rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-016-0064-7}, pages = {5}, year = {2016}, abstract = {Background Recently, the incidence rate of back pain (BP) in adolescents has been reported at 21\%. However, the development of BP in adolescent athletes is unclear. Hence, the purpose of this study was to examine the incidence of BP in young elite athletes in relation to gender and type of sport practiced. Methods Subjective BP was assessed in 321 elite adolescent athletes (m/f 57\%/43\%; 13.2 ± 1.4 years; 163.4 ± 11.4 cm; 52.6 ± 12.6 kg; 5.0 ± 2.6 training yrs; 7.6 ± 5.3 training h/week). Initially, all athletes were free of pain. The main outcome criterion was the incidence of back pain [\%] analyzed in terms of pain development from the first measurement day (M1) to the second measurement day (M2) after 2.0 ± 1.0 year. Participants were classified into athletes who developed back pain (BPD) and athletes who did not develop back pain (nBPD). BP (acute or within the last 7 days) was assessed with a 5-step face scale (face 1-2 = no pain; face 3-5 = pain). BPD included all athletes who reported faces 1 and 2 at M1 and faces 3 to 5 at M2. nBPD were all athletes who reported face 1 or 2 at both M1 and M2. Data was analyzed descriptively. Additionally, a Chi2 test was used to analyze gender- and sport-specific differences (p = 0.05). Results Thirty-two athletes were categorized as BPD (10\%). The gender difference was 5\% (m/f: 12\%/7\%) but did not show statistical significance (p = 0.15). The incidence of BP ranged between 6 and 15\% for the different sport categories. Game sports (15\%) showed the highest, and explosive strength sports (6\%) the lowest incidence. Anthropometrics or training characteristics did not significantly influence BPD (p = 0.14 gender to p = 0.90 sports; r2 = 0.0825). Conclusions BP incidence was lower in adolescent athletes compared to young non-athletes and even to the general adult population. Consequently, it can be concluded that high-performance sports do not lead to an additional increase in back pain incidence during early adolescence. Nevertheless, back pain prevention programs should be implemented into daily training routines for sport categories identified as showing high incidence rates.}, language = {en} } @article{IntziegianniCasselRaufetal.2016, author = {Intziegianni, Konstantina and Cassel, Michael and Rauf, S. and White, S. and Rector, Michael V. and Kaplick, Hannes and Wahmkow, Gunnar and Kratzenstein, S. and Mayer, Frank}, title = {Influence of Age and Pathology on Achilles Tendon Properties During a Single-leg Jump}, series = {International journal of sports medicine}, volume = {37}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0042-108198}, pages = {973 -- 978}, year = {2016}, abstract = {Prevalence of Achilles tendinopathy increases with age leading to a weaker tendon with predisposition to rupture. Conclusive evidence of the influence of age and pathology on Achilles tendon (AT) properties remains limited, as previous studies are based on standardized isometric conditions. The study investigates the influence of age and pathology on AT properties during single-leg vertical jump (SLVJ). 10 children (C), 10 asymptomatic adults (A), and 10 tendinopathic patients (T) were included. AT elongation [mm] from rest to maximal displacement during a SLVJ on a force-plate was sonographically assessed. AT compliance [mm/N]) and strain [\%] was calculated by dividing elongation by peak ground reaction force [N] and length, respectively. One-way ANOVA followed by Bonferroni post-hoc correction (=0.05) were used to compare C with A and A with T. AT elongation (p=0.004), compliance (p=0.001), and strain were found to be statistically significant higher in C (27 +/- 3mm, 0.026 +/- 0.006[mm/N], 13 +/- 2\%) compared to A (21 +/- 4mm, 0.017 +/- 0.005[mm/N], 10 +/- 2\%). No statistically significant differences (p0.05) was found between A and T (25 +/- 5mm, 0.019 +/- 0.004[mm/N], 12 +/- 3\%). During SLVJ, tendon responded differently in regards to age and pathology with children having the most compliant AT. Higher compliance found in healthy tendons might be considered as a protective factor against load-related injuries.}, language = {en} } @article{MuellerMuellerStolletal.2016, author = {M{\"u}ller, Juliane and M{\"u}ller, Steffen and Stoll, Josefine and Rector, Michael V. and Baur, Heiner and Mayer, Frank}, title = {Influence of Load on Three-Dimensional Segmental Trunk Kinematics in One-Handed Lifting: A Pilot Study}, series = {Journal of applied biomechanics}, volume = {32}, journal = {Journal of applied biomechanics}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1065-8483}, doi = {10.1123/jab.2015-0227}, pages = {520 -- 525}, year = {2016}, abstract = {Stability of the trunk is relevant in determining trunk response to different loading in everyday tasks initiated by the limbs. Descriptions of the trunk's mechanical movement patterns in response to different loads while lifting objects are still under debate. Hence, the aim of this study was to analyze the influence of weight on 3-dimensional segmental motion of the trunk during 1-handed lifting. Ten asymptomatic subjects were included (29 ± 3 y; 1.79 ± 0.09 m; 75 ± 14 kg). Subjects lifted 3× a light and heavy load from the ground up onto a table. Three-dimensional segmental trunk motion was measured (12 markers; 3 segments: upper thoracic area [UTA], lower thoracic area [LTA], lumbar area [LA]). Outcomes were total motion amplitudes (ROM;[°]) for anterior flexion, lateral flexion, and rotation of each segment. The highest ROM was observed in the LTA segment (anterior flexion), and the smallest ROM in the UTA segment (lateral flexion). ROM differed for all planes between the 3 segments for both tasks (P < .001). There were no differences in ROM between light and heavy loads (P > .05). No interaction effects (load × segment) were observed, as ROM did not reveal differences between loading tasks. Regardless of weight, the 3 segments did reflect differences, supporting the relevance of multisegmental analysis.}, language = {en} } @article{MuellerCarlsohnMuelleretal.2016, author = {Mueller, Steffen and Carlsohn, Anja and Mueller, Juliane and Baur, Heiner and Mayer, Frank}, title = {Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0149924}, pages = {1710 -- 1717}, year = {2016}, abstract = {Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children.}, language = {en} } @article{MuellerCarlsohnMuelleretal.2016, author = {M{\"u}ller, Steffen and Carlsohn, Anja and M{\"u}ller, Juliane and Baur, Heiner and Mayer, Frank}, title = {Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, number = {2}, publisher = {Public Library of Science}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0149924}, year = {2016}, abstract = {Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children.}, language = {en} } @article{NiedererVogtWippertetal.2016, author = {Niederer, Daniel and Vogt, Lutz and Wippert, Pia-Maria and Puschmann, Anne-Katrin and Pfeifer, Ann-Christin and Schiltenwolf, Marcus and Banzer, Winfried and Mayer, Frank}, title = {Medicine in spine exercise (MiSpEx) for nonspecific low back pain patients: study protocol for a multicentre, single-blind randomized controlled trial}, series = {Trials}, volume = {17}, journal = {Trials}, publisher = {BioMed Central}, address = {London}, issn = {1745-6215}, doi = {10.1186/s13063-016-1645-1}, pages = {9}, year = {2016}, abstract = {Background: Arising from the relevance of sensorimotor training in the therapy of nonspecific low back pain patients and from the value of individualized therapy, the present trial aims to test the feasibility and efficacy of individualized sensorimotor training interventions in patients suffering from nonspecific low back pain. Methods and study design: A multicentre, single-blind two-armed randomized controlled trial to evaluate the effects of a 12-week (3 weeks supervised centre-based and 9 weeks home-based) individualized sensorimotor exercise program is performed. The control group stays inactive during this period. Outcomes are pain, and pain-associated function as well as motor function in adults with nonspecific low back pain. Each participant is scheduled to five measurement dates: baseline (M1), following centre-based training (M2), following home-based training (M3) and at two follow-up time points 6 months (M4) and 12 months (M5) after M1. All investigations and the assessment of the primary and secondary outcomes are performed in a standardized order: questionnaires - clinical examination biomechanics (motor function). Subsequent statistical procedures are executed after the examination of underlying assumptions for parametric or rather non-parametric testing. Discussion: The results and practical relevance of the study will be of clinical and practical relevance not only for researchers and policy makers but also for the general population suffering from nonspecific low back pain.}, language = {en} } @article{MuellerEngelMuelleretal.2016, author = {Mueller, Juliane and Engel, Tilman and Mueller, Steffen and Kopinski, Stephan and Baur, Heiner and Mayer, Frank}, title = {Neuromuscular response of the trunk to sudden gait disturbances: Forward vs. backward perturbation}, series = {Journal of electromyography and kinesiology}, volume = {30}, journal = {Journal of electromyography and kinesiology}, publisher = {Elsevier}, address = {Oxford}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2016.07.005}, pages = {168 -- 176}, year = {2016}, abstract = {The study aimed to analyse neuromuscular activity of the trunk comparing four different perturbations during gait. Thirteen subjects (28 +/- 3 yrs) walked (1 m/s) on a split-belt treadmill, while 4 (belt) perturbations (F1, F2, B1, B2) were randomly applied. Perturbations differed, related to treadmill belt translation, in direction (forward (F)/backward (B)) and amplitude (20 m/s(2) (1)/40 m/s(2) (2)). Trunk muscle activity was assessed with a 12-lead-EMG. EMG-RMS [\%] (0-200 ms after perturbation; normalized to RMS of normal gait) was analyzed for muscles and four trunk areas (ventral left/right; dorsal left/right). Ratio of ventral: dorsal muscles were calculated. Muscle onset [ms] was determined. Data analysis was conducted descriptively, followed by ANOVA (post hoc Tukey-Kramer (alpha = 0.05)). All perturbations lead to an increase in EMG-RMS (428 +/- 289\%). F1 showed the lowest and F2 the highest increase for the flexors. B2 showed the highest increase for the extensors. Significant differences between perturbations could be observed for 6 muscles, as well as the 4 trunk areas. Ratio analysis revealed no significant differences (range 1.25 (B1) to 1.71 (F2) between stimuli. Muscle response time (ventral: 87.0 +/- 21.7 ms; dorsal: 88.4 +/- 17.0 ms) between stimuli was only significant (p = 0.005) for the dorsal muscles. Magnitude significantly influences neuromuscular trunk response patterns in healthy adults. Regardless of direction ventral muscles always revealed higher relative increase of activity while compensating the walking perturbations. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} }