@article{WiltingPatelPfestorfetal.2016, author = {Wilting, A. and Patel, R. and Pfestorf, Hans and Kern, C. and Sultan, K. and Ario, A. and Penaloza, F. and Kramer-Schadt, S. and Radchuk, Viktoriia and Foerster, D. W. and Fickel, J{\"o}rns}, title = {Evolutionary history and conservation significance of the Javan leopard Panthera pardus melas}, series = {Journal of zoology : proceedings of the Zoological Society of London}, volume = {299}, journal = {Journal of zoology : proceedings of the Zoological Society of London}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0952-8369}, doi = {10.1111/jzo.12348}, pages = {239 -- 250}, year = {2016}, abstract = {The leopard Panthera pardus is widely distributed across Africa and Asia; however, there is a gap in its natural distribution in Southeast Asia, where it occurs on the mainland and on Java but not on the interjacent island of Sumatra. Several scenarios have been proposed to explain this distribution gap. Here, we complemented an existing dataset of 68 leopard mtDNA sequences from Africa and Asia with mtDNA sequences (NADH5+ ctrl, 724bp) from 19 Javan leopards, and hindcasted leopard distribution to the Pleistocene to gain further insights into the evolutionary history of the Javan leopard. Our data confirmed that Javan leopards are evolutionarily distinct from other Asian leopards, and that they have been present on Java since the Middle Pleistocene. Species distribution projections suggest that Java was likely colonized via a Malaya-Java land bridge that by-passed Sumatra, as suitable conditions for leopards during Pleistocene glacial periods were restricted to northern and western Sumatra. As fossil evidence supports the presence of leopards on Sumatra at the beginning of the Late Pleistocene, our projections are consistent with a scenario involving the extinction of leopards on Sumatra as a consequence of the Toba super volcanic eruption (similar to 74kya). The impact of this eruption was minor on Java, suggesting that leopards managed to survive here. Currently, only a few hundred leopards still live in the wild and only about 50 are managed in captivity. Therefore, this unique and distinctive subspecies requires urgent, concerted conservation efforts, integrating insitu and ex situ conservation management activities in a One Plan Approach to species conservation management.}, language = {en} } @misc{DrygalaKorablevAnsorgeetal.2016, author = {Drygala, Frank and Korablev, Nikolay and Ansorge, Hermann and Fickel, J{\"o}rns and Isomursu, Marja and Elmeros, Morten and Kowalczyk, Rafał and Baltrunaite, Laima and Balciauskas, Linas and Saarma, Urmas and Schulze, Christoph and Borkenhagen, Peter and Frantz, Alain C.}, title = {Homogenous population genetic structure of the non-native raccoon dog (Nyctereutes procyonoides) in Europe as a result of rapid population expansion}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {540}, issn = {1866-8372}, doi = {10.25932/publishup-41092}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410921}, pages = {17}, year = {2016}, abstract = {The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species' dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large 'central' population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations.}, language = {en} } @article{DrygalaKorablevAnsorgeetal.2016, author = {Drygala, Frank and Korablev, Nikolay and Ansorge, Hermann and Fickel, J{\"o}rns and Isomursu, Marja and Elmeros, Morten and Kowalczyk, Rafal and Baltrunaite, Laima and Balciauskas, Linas and Saarma, Urmas and Schulze, Christoph and Borkenhagen, Peter and Frantz, Alain C.}, title = {Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides) in Europe as a Result of Rapid Population Expansion}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0153098}, pages = {933 -- 938}, year = {2016}, abstract = {The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species' dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large 'central' population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations.}, language = {en} } @article{PaijmansFickelCourtioletal.2016, author = {Paijmans, Johanna L. A. and Fickel, J{\"o}rns and Courtiol, Alexandre and Hofreiter, Michael and Foerster, Daniel W.}, title = {Impact of enrichment conditions on cross-species capture of fresh and degraded DNA}, series = {Molecular ecology resources}, volume = {16}, journal = {Molecular ecology resources}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12420}, pages = {42 -- 55}, year = {2016}, abstract = {Abstract By combining high-throughput sequencing with target enrichment ('hybridization capture'), researchers are able to obtain molecular data from genomic regions of interest for projects that are otherwise constrained by sample quality (e.g. degraded and contamination-rich samples) or a lack of a priori sequence information (e.g. studies on nonmodel species). Despite the use of hybridization capture in various fields of research for many years, the impact of enrichment conditions on capture success is not yet thoroughly understood. We evaluated the impact of a key parameter - hybridization temperature - on the capture success of mitochondrial genomes across the carnivoran family Felidae. Capture was carried out for a range of sample types (fresh, archival, ancient) with varying levels of sequence divergence between bait and target (i.e. across a range of species) using pools of individually indexed libraries on Agilent SureSelect™ arrays. Our results suggest that hybridization capture protocols require specific optimization for the sample type that is being investigated. Hybridization temperature affected the proportion of on-target sequences following capture: for degraded samples, we obtained the best results with a hybridization temperature of 65 °C, while a touchdown approach (65 °C down to 50 °C) yielded the best results for fresh samples. Evaluation of capture performance at a regional scale (sliding window approach) revealed no significant improvement in the recovery of DNA fragments with high sequence divergence from the bait at any of the tested hybridization temperatures, suggesting that hybridization temperature may not be the critical parameter for the enrichment of divergent fragments.}, language = {en} } @article{WeyrichBenzKarletal.2016, author = {Weyrich, Alexandra and Benz, Stephanie and Karl, Stephan and Jeschek, Marie and Jewgenow, Katarina and Fickel, J{\"o}rns}, title = {Paternal heat exposure causes DNA methylation and gene expression changes of Stat3 in Wild guinea pig sons}, series = {Ecology and evolution}, volume = {6}, journal = {Ecology and evolution}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.1993}, pages = {2657 -- 2666}, year = {2016}, abstract = {Epigenetic mechanisms convey environmental information through generations and can regulate gene expression. Epigenetic studies in wild mammals are rare, but enable understanding adaptation processes as they may occur in nature. In most wild mammal species, males are the dispersing sex and thus often have to cope with differing habitats and thermal changes more rapidly than the often philopatric females. As temperature is a major environmental selection factor, we investigated whether genetically heterogeneous Wild guinea pig (Cavia aperea) males adapt epigenetically to an increase in temperature, whether that response will be transmitted to the next generation(s), and whether it regulates mRNA expression. Five (F0) adult male guinea pigs were exposed to an increased ambient temperature for 2 months, corresponding to the duration of the species' spermatogenesis. To study the effect of heat, we focused on the main thermoregulatory organ, the liver. We analyzed CpG-methylation changes of male offspring (F1) sired before and after the fathers' heat treatment (as has recently been described in Weyrich et al. [Mol. Ecol., 2015]). Transcription analysis was performed for the three genes with the highest number of differentially methylated changes detected: the thermoregulation gene Signal Transducer and Activator of Transcription 3 (Stat3), the proteolytic peptidase gene Cathepsin Z (Ctsz), and Sirtuin 6 (Sirt6) with function in epigenetic regulation. Stat3 gene expression was significantly reduced (P < 0.05), which indicated a close link between CpG-methylation and expression levels for this gene. The two other genes did not show gene expression changes. Our results indicate the presence of a paternal transgenerational epigenetic effect. Quick adaptation to climatic changes may become increasingly relevant for the survival of wildlife species as global temperatures are rising.}, language = {en} } @article{WeyrichLenzJescheketal.2016, author = {Weyrich, Alexandra and Lenz, Dorina and Jeschek, Marie and Tzu Hung Chung, and Ruebensam, Kathrin and Goeritz, Frank and Jewgenow, Katarina and Fickel, J{\"o}rns}, title = {Paternal intergenerational epigenetic response to heat exposure in male Wild guinea pigs}, series = {Molecular ecology}, volume = {25}, journal = {Molecular ecology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.13494}, pages = {1729 -- 1740}, year = {2016}, abstract = {Epigenetic modifications, of which DNA methylation is the best studied one, can convey environmental information through generations via parental germ lines. Past studies have focused on the maternal transmission of epigenetic information to the offspring of isogenic mice and rats in response to external changes, whereas heterogeneous wild mammals as well as paternal epigenetic effects have been widely neglected. In most wild mammal species, males are the dispersing sex and have to cope with differing habitats and thermal changes. As temperature is a major environmental factor we investigated if genetically heterogeneous Wild guinea pig (Cavia aperea) males can adapt epigenetically to an increase in temperature and if that response will be transmitted to the next generation(s). Five adult male guinea pigs (F0) were exposed to an increased ambient temperature for 2 months, i.e. the duration of spermatogenesis. We studied the liver (as the main thermoregulatory organ) of F0 fathers and F1 sons, and testes of F1 sons for paternal transmission of epigenetic modifications across generation(s). Reduced representation bisulphite sequencing revealed shared differentially methylated regions in annotated areas between F0 livers before and after heat treatment, and their sons' livers and testes, which indicated a general response with ecological relevance. Thus, paternal exposure to a temporally limited increased ambient temperature led to an 'immediate' and 'heritable' epigenetic response that may even be transmitted to the F2 generation. In the context of globally rising temperatures epigenetic mechanisms may become increasingly relevant for the survival of species.}, language = {en} } @article{GaubertPatelVeronetal.2016, author = {Gaubert, Philippe and Patel, Riddhi P. and Veron, Geraldine and Goodman, Steven M. and Willsch, Maraike and Vasconcelos, Raquel and Lourenco, Andre and Sigaud, Marie and Justy, Fabienne and Joshi, Bheem Dutt and Fickel, J{\"o}rns and Wilting, Andreas}, title = {Phylogeography of the Small Indian Civet and Origin of Introductions to Western Indian Ocean Islands}, series = {The journal of heredity : official journal of the American Genetic Association}, volume = {108}, journal = {The journal of heredity : official journal of the American Genetic Association}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0022-1503}, doi = {10.1093/jhered/esw085}, pages = {270 -- 279}, year = {2016}, abstract = {The biogeographic dynamics affecting the Indian subcontinent, East and Southeast Asia during the Plio-Pleistocene has generated complex biodiversity patterns. We assessed the molecular biogeography of the small Indian civet (Viverricula indica) through mitogenome and cytochrome b + control region sequencing of 89 historical and modern samples to (1) establish a time-calibrated phylogeography across the species' native range and (2) test introduction scenarios to western Indian Ocean islands. Bayesian phylogenetic analyses identified 3 geographic lineages (East Asia, sister-group to Southeast Asia and the Indian subcontinent + northern Indochina) diverging 3.2-2.3 million years ago (Mya), with no clear signature of past demographic expansion. Within Southeast Asia, Balinese populations separated from the rest 2.6-1.3 Mya. Western Indian Ocean populations were assigned to the Indian subcontinent + northern Indochina lineage and had the lowest mitochondrial diversity. Approximate Bayesian computation did not distinguish between single versus multiple introduction scenarios. The early diversification of the small Indian civet was likely shaped by humid periods in the Late Pliocene-Early Pleistocene that created evergreen rainforest barriers, generating areas of intra-specific endemism in the Indian subcontinent, East, and Southeast Asia. Later, Pleistocene dispersals through drier conditions in South and Southeast Asia were likely, giving rise to the species' current natural distribution. Our molecular data supported the delineation of only 4 subspecies in V. indica, including an endemic Balinese lineage. Our study also highlighted the influence of prefirst millennium AD introductions to western Indian Ocean islands, with Indian and/or Arab traders probably introducing the species for its civet oil.}, language = {en} } @misc{BullHeurichSaveljevetal.2016, author = {Bull, James K. and Heurich, Marco and Saveljev, Alexander P. and Schmidt, Krzysztof and Fickel, J{\"o}rns and F{\"o}rster, Daniel W.}, title = {The effect of reintroductions on the genetic variability in Eurasian lynx populations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {884}, issn = {1866-8372}, doi = {10.25932/publishup-43511}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435117}, pages = {1229 -- 1234}, year = {2016}, abstract = {Over the past ~40 years, several attempts were made to reintroduce Eurasian lynx to suitable habitat within their former distribution range in Western Europe. In general, limited numbers of individuals have been released to establish new populations. To evaluate the effects of reintroductions on the genetic status of lynx populations we used 12 microsatellite loci to study lynx populations in the Bohemian-Bavarian and Vosges-Palatinian forests. Compared with autochthonous lynx populations, these two reintroduced populations displayed reduced genetic diversity, particularly the Vosges-Palatinian population. Our genetic data provide further evidence to support the status of 'endangered' and 'critically endangered' for the Bohemian-Bavarian and Vosges-Palatinian populations, respectively. Regarding conservation management, we highlight the need to limit poaching, and advocate additional translocations to bolster genetic variability.}, language = {en} } @article{BullHeurichSaveljevetal.2016, author = {Bull, James K. and Heurich, Marco and Saveljev, Alexander P. and Schmidt, Krzysztof and Fickel, J{\"o}rns and F{\"o}rster, Daniel W.}, title = {The effect of reintroductions on the genetic variability in Eurasian lynx populations: the cases of Bohemian-Bavarian and Vosges-Palatinian populations}, series = {Conservation genetics}, volume = {17}, journal = {Conservation genetics}, publisher = {Springer}, address = {Dordrecht}, issn = {1566-0621}, doi = {10.1007/s10592-016-0839-0}, pages = {1229 -- 1234}, year = {2016}, language = {en} } @article{PatelFoersterKitcheneretal.2016, author = {Patel, Riddhi P. and F{\"o}rster, Daniel W. and Kitchener, Andrew C. and Rayan, Mark D. and Mohamed, Shariff W. and Werner, Laura and Lenz, Dorina and Pfestorf, Hans and Kramer-Schadt, Stephanie and Radchuk, Viktoriia and Fickel, J{\"o}rns and Wilting, Andreas}, title = {Two species of Southeast Asian cats in the genus Catopuma with diverging histories: an island endemic forest specialist and a widespread habitat generalist}, series = {Royal Society Open Science}, volume = {3}, journal = {Royal Society Open Science}, publisher = {Royal Society}, address = {London}, issn = {2054-5703}, doi = {10.1098/rsos.160350}, pages = {741 -- 752}, year = {2016}, abstract = {Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based onmorphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to PeninsularMalaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis.}, language = {en} }