@phdthesis{Castino2016, author = {Castino, Fabiana}, title = {Climate variability and extreme hydro-meteorological events in the Southern Central Andes, NW Argentina}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396815}, school = {Universit{\"a}t Potsdam}, pages = {xi, 144}, year = {2016}, abstract = {Extreme hydro-meteorological events, such as severe droughts or heavy rainstorms, constitute primary manifestations of climate variability and exert a critical impact on the natural environment and human society. This is particularly true for high-mountain areas, such as the eastern flank of the southern Central Andes of NW Argentina, a region impacted by deep convection processes that form the basis of extreme events, often resulting in floods, a variety of mass movements, and hillslope processes. This region is characterized by pronounced E-W gradients in topography, precipitation, and vegetation cover, spanning low to medium-elevation, humid and densely vegetated areas to high-elevation, arid and sparsely vegetated environments. This strong E-W gradient is mirrored by differences in the efficiency of surface processes, which mobilize and transport large amounts of sediment through the fluvial system, from the steep hillslopes to the intermontane basins and further to the foreland. In a highly sensitive high-mountain environment like this, even small changes in the spatiotemporal distribution, magnitude and rates of extreme events may strongly impact environmental conditions, anthropogenic activity, and the well-being of mountain communities and beyond. However, although the NW Argentine Andes comprise the catchments for the La Plata river that traverses one of the most populated and economically relevant areas of South America, there are only few detailed investigations of climate variability and extreme hydro-meteorological events. In this thesis, I focus on deciphering the spatiotemporal variability of rainfall and river discharge, with particular emphasis on extreme hydro-meteorological events in the subtropical southern Central Andes of NW Argentina during the past seven decades. I employ various methods to assess and quantify statistically significant trend patterns of rainfall and river discharge, integrating high-quality daily time series from gauging stations (40 rainfall and 8 river discharge stations) with gridded datasets (CPC-uni and TRMM 3B42 V7), for the period between 1940 and 2015. Evidence for a general intensification of the hydrological cycle at intermediate elevations (~ 0.5 - 3 km asl) at the eastern flank of the southern Central Andes is found both from rainfall and river-discharge time-series analysis during the period from 1940 to 2015. This intensification is associated with the increase of the annual total amount of rainfall and the mean annual discharge. However, most pronounced trends are found at high percentiles, i.e. extreme hydro-meteorological events, particularly during the wet season from December to February.An important outcome of my studies is the recognition of a rapid increase in the amount of river discharge during the period between 1971 and 1977, most likely linked to the 1976-77 global climate shift, which is associated with the North Pacific Ocean sea surface temperature variability. Interestingly, after this rapid increase, both rainfall and river discharge decreased at low and intermediate elevations along the eastern flank of the Andes. In contrast, during the same time interval, at high elevations, extensive areas on the arid Puna de Atacama plateau have recorded increasing annual rainfall totals. This has been associated with more intense extreme hydro-meteorological events from 1979 to 2014. This part of the study reveals that low-, intermediate, and high-elevation sectors in the Andes of NW Argentina respond differently to changing climate conditions. Possible forcing mechanisms of the pronounced hydro-meteorological variability observed in the study area are also investigated. For the period between 1940 and 2015, I analyzed modes of oscillation of river discharge from small to medium drainage basins (102 to 104 km2), located on the eastern flank of the orogen. First, I decomposed the relevant monthly time series using the Hilbert-Huang Transform, which is particularly appropriate for non-stationary time series that result from non-linear natural processes. I observed that in the study region discharge variability can be described by five quasi-periodic oscillatory modes on timescales varying from 1 to ~20 years. Secondly, I tested the link between river-discharge variations and large-scale climate modes of variability, using different climate indices, such as the BEST ENSO (Bivariate El Ni{\~n}o-Southern Oscillation Time-series) index. This analysis reveals that, although most of the variance on the annual timescale is associated with the South American Monsoon System, a relatively large part of river-discharge variability is linked to Pacific Ocean variability (PDO phases) at multi-decadal timescales (~20 years). To a lesser degree, river discharge variability is also linked to the Tropical South Atlantic (TSA) sea surface temperature anomaly at multi-annual timescales (~2-5 years). Taken together, these findings exemplify the high degree of sensitivity of high-mountain environments with respect to climatic variability and change. This is particularly true for the topographic transitions between the humid, low-moderate elevations and the semi-arid to arid highlands of the southern Central Andes. Even subtle changes in the hydro-meteorological regime of these areas of the mountain belt react with major impacts on erosional hillslope processes and generate mass movements that fundamentally impact the transport capacity of mountain streams. Despite more severe storms in these areas, the fluvial system is characterized by pronounced variability of the stream power on different timescales, leading to cycles of sediment aggradation, the loss of agriculturally used land and severe impacts on infrastructure.}, language = {en} } @misc{NeugebauerSchwabWaldmannetal.2016, author = {Neugebauer, Ina and Schwab, M. J. and Waldmann, Nicolas D. and Tjallingii, Rik and Frank, U. and Hadzhiivanova, E. and Naumann, R. and Taha, N. and Agnon, Amotz and Enzel, Y. and Brauer, Achim}, title = {Hydroclimatic variability in the Levant during the early last glacial (similar to 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {549}, issn = {1866-8372}, doi = {10.25932/publishup-41187}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411879}, pages = {16}, year = {2016}, abstract = {The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (mu XRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i. e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at similar to 110-108 +/- 5 and similar to 93-87 +/- 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at similar to 108-93 +/- 6 and similar to 87-75 +/- 7 ka correspond to interstadial conditions in the central Mediterranean, i. e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period.}, language = {en} }