@article{NiedererVogtWippertetal.2016, author = {Niederer, Daniel and Vogt, Lutz and Wippert, Pia-Maria and Puschmann, Anne-Katrin and Pfeifer, Ann-Christin and Schiltenwolf, Marcus and Banzer, Winfried and Mayer, Frank}, title = {Medicine in spine exercise (MiSpEx) for nonspecific low back pain patients: study protocol for a multicentre, single-blind randomized controlled trial}, series = {Trials}, volume = {17}, journal = {Trials}, publisher = {BioMed Central}, address = {London}, issn = {1745-6215}, doi = {10.1186/s13063-016-1645-1}, pages = {9}, year = {2016}, abstract = {Background: Arising from the relevance of sensorimotor training in the therapy of nonspecific low back pain patients and from the value of individualized therapy, the present trial aims to test the feasibility and efficacy of individualized sensorimotor training interventions in patients suffering from nonspecific low back pain. Methods and study design: A multicentre, single-blind two-armed randomized controlled trial to evaluate the effects of a 12-week (3 weeks supervised centre-based and 9 weeks home-based) individualized sensorimotor exercise program is performed. The control group stays inactive during this period. Outcomes are pain, and pain-associated function as well as motor function in adults with nonspecific low back pain. Each participant is scheduled to five measurement dates: baseline (M1), following centre-based training (M2), following home-based training (M3) and at two follow-up time points 6 months (M4) and 12 months (M5) after M1. All investigations and the assessment of the primary and secondary outcomes are performed in a standardized order: questionnaires - clinical examination biomechanics (motor function). Subsequent statistical procedures are executed after the examination of underlying assumptions for parametric or rather non-parametric testing. Discussion: The results and practical relevance of the study will be of clinical and practical relevance not only for researchers and policy makers but also for the general population suffering from nonspecific low back pain.}, language = {en} } @article{MendezRebolledoGaticaRojasMartinezValdesetal.2016, author = {Mendez-Rebolledo, Guillermo and Gatica-Rojas, Valeska and Martinez-Valdes, Eduardo Andr{\´e}s and Xie, H. B.}, title = {The recruitment order of scapular muscles depends on the characteristics of the postural task}, series = {Journal of electromyography and kinesiology}, volume = {31}, journal = {Journal of electromyography and kinesiology}, publisher = {Elsevier}, address = {Oxford}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2016.09.001}, pages = {40 -- 47}, year = {2016}, abstract = {Previous studies show that the scapular muscle recruitment order could possibly change according to the characteristics of the postural task. We aimed to compare the activation latencies of serratus anterior (SA), upper, middle, and lower trapezius (UT, MT and LT, respectively) between an unpredictable perturbation (sudden arm destabilization) and a predictable task (voluntary arm raise) and, to determine the differences in the muscle recruitment order in each task. The electromyographic signals of 23 participants were recorded while the tasks were performed. All scapular muscles showed earlier onset latency in the voluntary arm raise than in the sudden arm destabilization. No significant differences were observed in the muscle recruitment order for the sudden arm destabilization (p > 0.05). Conversely, for voluntary arm raise the MT, LT SA and anterior deltoid (AD) were activated significantly earlier than the UT (p < 0.001). Scapular muscles present a specific recruitment order during a predictable task: SA was activated prior to the AD and the UT after the AD, in a recruitment order of SA, AD, UT, MT, and LT. While in an unpredictable motor task, all muscles were activated after the destabilization without a specific recruitment order, but rather a simultaneous activation. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} }