@article{TianCaoDallmeyeretal.2016, author = {Tian, Fang and Cao, Xianyong and Dallmeyer, Anne and Ni, Jian and Zhao, Yan and Wang, Yongbo and Herzschuh, Ulrike}, title = {Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {137}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.02.001}, pages = {33 -- 44}, year = {2016}, abstract = {We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the Bolling/Allerod period (B/A; ca. 14.5 ka BP) and again at the beginning of the Holocene (ca. 11.5 ka BP), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid Holocene (ca. 8 ka BP) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka BP (ECHAM5/JSBACH similar to 1.125 degrees spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BiskabornSubettoSavelievaetal.2016, author = {Biskaborn, Boris and Subetto, D. A. and Savelieva, L. A. and Vakhrameeva, P. S. and Hansche, A. and Herzschuh, Ulrike and Klemm, J. and Heinecke, L. and Pestryakova, Luidmila Agafyevna and Meyer, H. and Kuhn, G. and Diekmann, Bernhard}, title = {Late Quaternary vegetation and lake system dynamics in north-eastern Siberia: Implications for seasonal climate variability}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {147}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.08.014}, pages = {406 -- 421}, year = {2016}, abstract = {Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between similar to 13,500 and similar to 8900 cal. years BP and possibly during the 8200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8 degrees C during the Holocene Thermal Maximum (HTM) between similar to 8900 and similar to 4500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice sheet vanished 7000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} }