@misc{WernerMuenzbergHassetal.2016, author = {Werner, Peter and M{\"u}nzberg, Marvin and Hass, Roland and Reich, Oliver}, title = {Process analytical approaches for the coil-to-globule transition of poly(N-isopropylacrylamide) in a concentrated aqueous suspension}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {944}, issn = {1866-8372}, doi = {10.25932/publishup-43116}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431162}, pages = {807 -- 819}, year = {2016}, abstract = {The coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM) microgel particles suspended in water has been investigated in situ as a function of heating and cooling rate with four optical process analytical technologies (PAT), sensitive to structural changes of the polymer. Photon Density Wave (PDW) spectroscopy, Focused Beam Reflectance Measurements (FBRM), turbidity measurements, and Particle Vision Microscope (PVM) measurements are found to be powerful tools for the monitoring of the temperature-dependent transition of such thermo-responsive polymers. These in-line technologies allow for monitoring of either the reduced scattering coefficient and the absorption coefficient, the chord length distribution, the reflected intensities, or the relative backscatter index via in-process imaging, respectively. Varying heating and cooling rates result in rate-dependent lower critical solution temperatures (LCST), with different impact of cooling and heating. Particularly, the data obtained by PDW spectroscopy can be used to estimate the thermodynamic transition temperature of PNIPAM for infinitesimal heating or cooling rates. In addition, an inverse hysteresis and a reversible building of micrometer-sized agglomerates are observed for the PNIPAM transition process.}, language = {en} } @misc{MuenzbergHassKhanhetal.2016, author = {M{\"u}nzberg, Marvin and Hass, Roland and Khanh, Ninh Dinh Duc and Reich, Oliver}, title = {Limitations of turbidity process probes and formazine as their calibration standard}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {831}, issn = {1866-8372}, doi = {10.25932/publishup-42826}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428263}, pages = {12}, year = {2016}, abstract = {Turbidity measurements are frequently implemented for the monitoring of heterogeneous chemical, physical, or biotechnological processes. However, for quantitative measurements, turbidity probes need calibration, as is requested and regulated by the ISO 7027:1999. Accordingly, a formazine suspension has to be produced. Despite this regulatory demand, no scientific publication on the stability and reproducibility of this polymerization process is available. In addition, no characterization of the optical properties of this calibration material with other optical methods had been achieved so far. Thus, in this contribution, process conditions such as temperature and concentration have been systematically investigated by turbidity probe measurements and Photon Density Wave (PDW) spectroscopy, revealing an influence on the temporal formazine formation onset. In contrast, different reaction temperatures do not lead to different scattering properties for the final formazine suspensions, but give an access to the activation energy for this condensation reaction. Based on PDW spectroscopy data, the synthesis of formazine is reproducible. However, very strong influences of the ambient conditions on the measurements of the turbidity probe have been observed, limiting its applicability. The restrictions of the turbidity probe with respect to scatterer concentration are examined on the basis of formazine and polystyrene suspensions. Compared to PDW spectroscopy data, signal saturation is observed at already low reduced scattering coefficients.}, language = {en} }