@article{SandinSteffenSchoenberneretal.2016, author = {Sandin, C. and Steffen, M. and Schoenberner, D. and R{\"u}hling, Ute}, title = {Hot bubbles of planetary nebulae with hydrogen-deficient winds I. Heat conduction in a chemically stratified plasma}, series = {Frontiers in psychology}, volume = {586}, journal = {Frontiers in psychology}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527357}, pages = {11}, year = {2016}, abstract = {Heat conduction has been found a plausible solution to explain discrepancies between expected and measured temperatures in hot bubbles of planetary nebulae (PNe). While the heat conduction process depends on the chemical composition, to date it has been exclusively studied for pure hydrogen plasmas in PNe. A smaller population of PNe show hydrogen-deficient and helium-and carbon-enriched surfaces surrounded by bubbles of the same composition; considerable differences are expected in physical properties of these objects in comparison to the pure hydrogen case. The aim of this study is to explore how a chemistry-dependent formulation of the heat conduction affects physical properties and how it affects the X-ray emission from PN bubbles of hydrogen-deficient stars. We extend the description of heat conduction in our radiation hydrodynamics code to work with any chemical composition. We then compare the bubble-formation process with a representative PN model using both the new and the old descriptions. We also compare differences in the resulting X-ray temperature and luminosity observables of the two descriptions. The improved equations show that the heat conduction in our representative model of a hydrogen-deficient PN is nearly as efficient with the chemistry-dependent description; a lower value on the diffusion coefficient is compensated by a slightly steeper temperature gradient. The bubble becomes somewhat hotter with the improved equations, but differences are otherwise minute. The observable properties of the bubble in terms of the X-ray temperature and luminosity are seemingly unaffected.}, language = {en} } @misc{BarniskeOskinovaHamann2016, author = {Barniske, Andreas and Oskinova, Lida and Hamann, Wolf-Rainer}, title = {Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas (vol 486, pg 971, 2008)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {587}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/200809568e}, pages = {1}, year = {2016}, language = {en} } @article{HubrigScholzHamannetal.2016, author = {Hubrig, Swetlana and Scholz, Kathleen and Hamann, Wolf-Rainer and Schoeller, M. and Ignace, R. and Ilyin, Ilya and Gayley, K. G. and Oskinova, Lida}, title = {Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry}, series = {Monthly notices of the Royal Astronomical Society}, volume = {458}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw558}, pages = {3381 -- 3393}, year = {2016}, abstract = {To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.}, language = {en} } @article{ShenarHainichTodtetal.2016, author = {Shenar, Tomer and Hainich, Rainer and Todt, Helge Tobias and Sander, Andreas Alexander Christoph and Hamann, Wolf-Rainer and Moffat, Anthony F. J. and Eldridge, J. J. and Pablo, H. and Oskinova, Lida and Richardson, N. D.}, title = {Wolf-Rayet stars in the Small Magellanic Cloud II. Analysis of the binaries}, series = {American mineralogist : an international journal of earth and planetary materials}, volume = {591}, journal = {American mineralogist : an international journal of earth and planetary materials}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527916}, pages = {25}, year = {2016}, abstract = {Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (M-i greater than or similar to 20 M-circle dot) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40\% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims. By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods. The spectral analysis is performed with the PotsdamWolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results. Significant hydrogen mass fractions (0.1 < X-H < 0.4) are detected in all WN components. A comparison with mass-luminosity relations and evolutionary tracks implies that the majority of the WR stars in our sample are not chemically homogeneous. The WR component in the binary AB6 is found to be very luminous (log L approximate to 6.3 [L-circle dot]) given its orbital mass (approximate to 10 M-circle dot), presumably because of observational contamination by a third component. Evolutionary paths derived for our objects suggest that Roche lobe overflow had occurred in most systems, affecting their evolution. However, the implied initial masses (greater than or similar to 60 M-circle dot) are large enough for the primaries to have entered the WR phase, regardless of binary interaction. Conclusions. Together with the results for the putatively single SMC WR stars, our study suggests that the binary evolution channel does not dominate the formation of WR stars at SMC metallicity.}, language = {en} } @article{AldorettaStLouisRichardsonetal.2016, author = {Aldoretta, E. J. and St-Louis, N. and Richardson, N. D. and Moffat, Anthony F. J. and Eversberg, T. and Hill, G. M. and Shenar, Tomer and Artigau, E. and Gauza, B. and Knapen, J. H. and Kubat, Jiř{\´i} and Kubatova, Brankica and Maltais-Tariant, R. and Munoz, M. and Pablo, H. and Ramiaramanantsoa, T. and Richard-Laferriere, A. and Sablowski, D. P. and Simon-Diaz, S. and St-Jean, L. and Bolduan, F. and Dias, F. M. and Dubreuil, P. and Fuchs, D. and Garrel, T. and Grutzeck, G. and Hunger, T. and Kuesters, D. and Langenbrink, M. and Leadbeater, R. and Li, D. and Lopez, A. and Mauclaire, B. and Moldenhawer, T. and Potter, M. and dos Santos, E. M. and Schanne, L. and Schmidt, J. and Sieske, H. and Strachan, J. and Stinner, E. and Stinner, P. and Stober, B. and Strandbaek, K. and Syder, T. and Verilhac, D. and Waldschlaeger, U. and Weiss, D. and Wendt, A.}, title = {An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134}, series = {Monthly notices of the Royal Astronomical Society}, volume = {460}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1188}, pages = {3407 -- 3417}, year = {2016}, abstract = {During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He ii lambda 5411 emission line, the previously identified period was refined to P = 2.255 +/- 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 +/- 6 d, or similar to 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Delta I center dot a parts per thousand integral 90A degrees was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C iv lambda lambda 5802,5812 and He i lambda 5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He i lambda 5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.}, language = {en} } @article{RichardsonShenarRoyLoubieretal.2016, author = {Richardson, Noel D. and Shenar, Tomer and Roy-Loubier, Olivier and Schaefer, Gail and Moffat, Anthony F. J. and St-Louis, Nicole and Gies, Douglas R. and Farrington, Chris and Hill, Grant M. and Williams, Peredur M. and Gordon, Kathryn and Pablo, Herbert and Ramiaramanantsoa, Tahina}, title = {The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138}, series = {Monthly notices of the Royal Astronomical Society}, volume = {461}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1585}, pages = {4115 -- 4124}, year = {2016}, abstract = {We report on interferometric observations with the CHARAArray of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR, 137 = 0.59 +/- 0.04; fWR, 138 = 0.67 +/- 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edgeon. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane.}, language = {en} }