@article{PimenovaGoldobinRosenblumetal.2016, author = {Pimenova, Anastasiya V. and Goldobin, Denis S. and Rosenblum, Michael and Pikovskij, Arkadij}, title = {Interplay of coupling and common noise at the transition to synchrony in oscillator populations}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep38518}, pages = {7}, year = {2016}, abstract = {There are two ways to synchronize oscillators: by coupling and by common forcing, which can be pure noise. By virtue of the Ott-Antonsen ansatz for sine-coupled phase oscillators, we obtain analytically tractable equations for the case where both coupling and common noise are present. While noise always tends to synchronize the phase oscillators, the repulsive coupling can act against synchrony, and we focus on this nontrivial situation. For identical oscillators, the fully synchronous state remains stable for small repulsive coupling; moreover it is an absorbing state which always wins over the asynchronous regime. For oscillators with a distribution of natural frequencies, we report on a counter-intuitive effect of dispersion (instead of usual convergence) of the oscillators frequencies at synchrony; the latter effect disappears if noise vanishes.}, language = {en} } @article{SchroetterBoucheWendtetal.2016, author = {Schroetter, I. and Bouche, Nicolas and Wendt, Martin and Contini, Thierry and Finley, H. and Pello, R. and Bacon, Roland and Cantalupo, Sebastiano and Marino, Raffaella Anna and Richard, J. and Lilly, S. J. and Schaye, Joop and Soto, K. and Steinmetz, Matthias and Straka, Lorrie A. and Wisotzki, Lutz}, title = {MUSE GAS FLOW AND WIND (MEGAFLOW). I. FIRST MUSE RESULTS ON BACKGROUND QUASARS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {833}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/833/1/39}, pages = {17}, year = {2016}, abstract = {The physical properties of galactic winds are one of the keys to understand galaxy formation and evolution. These properties can be constrained thanks to background quasar lines of sight (LOS) passing near star-forming galaxies (SFGs). We present the first results of the MusE GAs FLOw and Wind survey obtained from two quasar fields, which have eight Mg II absorbers of which three have rest equivalent width greater than 0.8 angstrom. With the new Multi Unit Spectroscopic Explorer (MUSE) spectrograph on the Very Large Telescope (VLT), we detect six (75\%) Mg II host galaxy candidates within a radius of 30. from the quasar LOS. Out of these six galaxy-quasar pairs, from geometrical argument, one is likely probing galactic outflows, where two are classified as "ambiguous,"two are likely probing extended gaseous disks and one pair seems to be a merger. We focus on the wind-pair and constrain the outflow using a high-resolution quasar spectra from the Ultraviolet and Visual Echelle Spectrograph. Assuming the metal absorption to be due to ga;s flowing out of the detected galaxy through a cone along the minor axis, we find outflow velocities in the order of approximate to 150 km s(-1) (i.e., smaller than the escape velocity) with a loading factor, eta = M-out/SFR, of approximate to 0.7. We see evidence for an open conical flow, with a low-density inner core. In the future, MUSE will provide us with about 80 multiple galaxy-quasar pairs in two dozen fields.}, language = {en} } @article{RyabchunKolloscheWegeneretal.2016, author = {Ryabchun, Alexander and Kollosche, Matthias and Wegener, Michael and Sakhno, Oksana}, title = {Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics}, series = {Advanced materials}, volume = {28}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201602881}, pages = {10217 -- 10223}, year = {2016}, abstract = {Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17\%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties.}, language = {en} } @article{OttoJaumannKrohnetal.2016, author = {Otto, Katharina Alexandra and Jaumann, R. and Krohn, K. and Spahn, Frank and Raymond, C. A. and Russell, C. T.}, title = {The Coriolis effect on mass wasting during the Rheasilvia impact on asteroid Vesta}, series = {Geophysical research letters}, volume = {43}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL071539}, pages = {12340 -- 12347}, year = {2016}, abstract = {We investigate the influence of the Coriolis force on mass motion related to the Rheasilvia impact on asteroid Vesta. Observations by the NASA Dawn mission revealed a pattern of curved radial ridges, which are related to Coriolis-deflected mass-wasting during the initial modification stage of the crater. Utilizing the projected curvature of the mass-wasting trajectories, we developed a method that enabled investigation of the initial mass wasting of the Rheasilvia impact by observational means. We demonstrate that the Coriolis force can strongly affect the crater formation processes on rapidly rotating objects, and we derive the material's velocities (28.9 ± 22.5 m/s), viscosities (1.5-9.0 × 106 Pa s) and coefficients of friction (0.02-0.81) during the impact modification stage. The duration of the impact modification stage could be estimated to (1.1 ± 0.5) h. By analyzing the velocity distribution with respect to the topography, we deduce that the Rheasilvia impactor hit a heterogeneous target and that the initial crater walls were significantly steeper during the modification stage.}, language = {en} } @article{FeldmannMaduarSanteretal.2016, author = {Feldmann, David and Maduar, Salim R. and Santer, Mark and Lomadze, Nino and Vinogradova, Olga I. and Santer, Svetlana}, title = {Manipulation of small particles at solid liquid interface}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep36443}, pages = {10}, year = {2016}, abstract = {The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.}, language = {en} } @article{deCarvalhoMetzlerCherstvy2016, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces}, series = {New journal of physics : the open-access journal for physics}, volume = {18}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ.}, address = {London}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/8/083037}, year = {2016}, abstract = {We study the adsorption-desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition—demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces—are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye-H{\"u}ckel approximation is often not feasible and the nonlinear Poisson-Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson-Boltzmann equation is smaller than the Debye-H{\"u}ckel result, such that the required critical surface charge density for polyelectrolyte adsorption σc increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical-chemical and biophysical systems.}, language = {en} } @article{ReppertPuddellKocetal.2016, author = {Reppert, Alexander von and Puddell, J. and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, series = {Structural dynamics}, volume = {3}, journal = {Structural dynamics}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/1.4961253}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the N{\´e}el temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.}, language = {en} } @article{BodrovaChechkinCherstvyetal.2016, author = {Bodrova, Anna S. and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Safdari, Hadiseh and Sokolov, Igor M. and Metzler, Ralf}, title = {Underdamped scaled Brownian motion}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep30520}, year = {2016}, abstract = {It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.}, language = {en} } @article{CherstvyMetzler2016, author = {Cherstvy, Andrey G. and Metzler, Ralf}, title = {Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {18}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C6CP03101C}, pages = {23840 -- 23852}, year = {2016}, abstract = {We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and has a deterministic average growth or decay in time. In this study we compare computer simulations of the stochastic Langevin equation for this random diffusion process with analytical results. We explore the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive regimes. We also consider effects of the inertial term on the particle motion. The investigation of the resulting diffusion is performed for unconfined and confined motion.}, language = {en} } @article{GhoshCherstvyPetrovetal.2016, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Petrov, Eugene P. and Metzler, Ralf}, title = {Interactions of rod-like particles on responsive elastic sheets}, series = {Soft matter}, journal = {Soft matter}, publisher = {RSC}, address = {London}, issn = {1744-6848}, doi = {10.1039/C6SM01522K}, year = {2016}, abstract = {What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive-repulsive rod-rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed.}, language = {en} }