@misc{WuGlebeBoeker2015, author = {Wu, Lei and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles}, series = {Polymer Chemistry}, volume = {6}, journal = {Polymer Chemistry}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c5py00525f}, pages = {5143 -- 5184}, year = {2015}, abstract = {In recent years, core/shell nanohybrids containing a nanoparticle core and a distinct surrounding shell of polymer brushes have received extensive attention in nanoelectronics, nanophotonics, catalysis, nanopatterning, drug delivery, biosensing, and many others. From the large variety of existing polymerization methods on the one hand and strategies for grafting onto nanoparticle surfaces on the other hand, the combination of grafting-from with controlled radical polymerization (CRP) techniques has turned out to be the best suited for synthesizing these well-defined core/shell nanohybrids and is known as surface-initiated CRP. Most common among these are surface-initiated atom transfer radical polymerization (ATRP), surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, and surface-initiated nitroxide-mediated polymerization (NMP). This review highlights the state of the art of growing polymers from nanoparticles using surface-initiated CRP techniques. We focus on mechanistic aspects, synthetic procedures, and the formation of complex architectures as well as novel properties. From the vast number of examples of nanoparticle/polymer hybrids formed by surface-initiated CRP techniques, we present nanohybrid formation from the particularly important and most studied silica nanoparticles, gold nanocrystals, and proteins which can be regarded as bionanoparticles.}, language = {en} } @misc{Taubert2015, author = {Taubert, Andreas}, title = {Electrospinning of Ionogels: Current Status and Future Perspectives}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201402490}, pages = {1148 -- 1159}, year = {2015}, abstract = {Ionogels (IGs), also termed ion gels, are functional hybrid materials based on an ionic liquid (IL) and a polymeric, hybrid, or inorganic matrix. IGs combine the properties of the matrix such as mechanical strength with IL properties like high ionic conductivity, high thermal stability, or catalytic activity. IGs are thus attractive for many applications, but the vast majority of IGs made and published so far are bulk materials or dense films. Applications like sensing or catalysis, however, would benefit from IGs with high surface areas or defined surface morphologies or architectures. In spite of this, only relatively few examples of high-surface-area IGs have been made so far; this has mostly been achieved by electrospinning, which has proven to be a promising strategy towards advanced IGs. The current review discusses first developments and outlines the future potential of electrospun ionogels, predominantly from a materials and inorganic chemistry perspective.}, language = {en} } @misc{VankarLinker2015, author = {Vankar, Yashwant D. and Linker, Torsten}, title = {Recent Developments in the Synthesis of 2-C-Branched and 1,2-Annulated Carbohydrates}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, number = {35}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201501176}, pages = {7633 -- 7642}, year = {2015}, abstract = {The importance of carbohydrate chemistry in biological and medicinal chemistry has led to enormous developments in the synthesis of carbohydrate mimics. In this context, the synthesis of branched sugars in general and of 2-C-branched carbohydrates in particular, as well as the synthesis of 1,2-annulated sugars, have received immense attention. They serve not only as carbohydrate mimics in the form of stand-alone molecules, but also as useful intermediates in the synthesis of many natural products, their analogues, and glycosidase inhibitors. This microreview covers the recent synthetic efforts in this area and puts the subject matter into proper perspective for future developments.}, language = {en} }