@phdthesis{Kamprath2014, author = {Kamprath, Martin}, title = {A microfoundations perspectives on fresight and business models}, pages = {224}, year = {2014}, language = {en} } @phdthesis{Supaporn2014, author = {Supaporn, Worakrit}, title = {Categorical equivalence of clones}, pages = {89}, year = {2014}, language = {en} } @article{HaferKiyLucke2014, author = {Hafer, J{\"o}rg and Kiy, Alexander and Lucke, Ulrike}, title = {Moodle \& Co. auf dem Weg zur Personal Learning Environment}, series = {eleed}, volume = {2014}, journal = {eleed}, number = {10}, issn = {1860-7470}, year = {2014}, abstract = {Ausgehend von der typischen IT-Infrastruktur f{\"u}r E-Learning an Hochschulen auf der einen Seite sowie vom bisherigen Stand der Forschung zu Personal Learning Environments (PLEs) auf der anderen Seite zeigt dieser Beitrag auf, wie bestehende Werkzeuge bzw. Dienste zusammengef{\"u}hrt und f{\"u}r die Anforderungen der modernen, rechnergest{\"u}tzten Pr{\"a}senzlehre aufbereitet werden k{\"o}nnen. F{\"u}r diesen interdisziplin{\"a}ren Entwicklungsprozess bieten sowohl klassische Softwareentwicklungsverfahren als auch bestehende PLE-Modelle wenig Hilfestellung an. Der Beitrag beschreibt die in einem campusweiten Projekt an der Universit{\"a}t Potsdam verfolgten Ans{\"a}tze und die damit erzielten Ergebnisse. Daf{\"u}r werden zun{\"a}chst typische Lehr-/Lern-bzw. Kommunikations-Szenarien identifiziert, aus denen Anforderungen an eine unterst{\"u}tzende Plattform abgeleitet werden. Dies f{\"u}hrt zu einer umfassenden Sammlung zu ber{\"u}cksichtigender Dienste und deren Funktionen, die gem{\"a}ß den Spezifika ihrer Nutzung in ein Gesamtsystem zu integrieren sind. Auf dieser Basis werden grunds{\"a}tzliche Integrationsans{\"a}tze und technische Details dieses Mash-Ups in einer Gesamtschau aller relevanten Dienste betrachtet und in eine integrierende Systemarchitektur {\"u}berf{\"u}hrt. Deren konkrete Realisierung mit Hilfe der Portal-Technologie Liferay wird dargestellt, wobei die eingangs definierten Szenarien aufgegriffen und exemplarisch vorgestellt werden. Erg{\"a}nzende Anpassungen im Sinne einer personalisierbaren bzw. adaptiven Lern-(und Arbeits-)Umgebung werden ebenfalls unterst{\"u}tzt und kurz aufgezeigt.}, language = {en} } @article{BoggioBodenmuellerFrembergetal.2014, author = {Boggio, Jose M. Chavez and Bodenmueller, D. and Fremberg, T. and Haynes, R. and Roth, Martin M. and Eisermann, R. and Lisker, M. and Zimmermann, L. and Boehm, Michael}, title = {Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization}, series = {Journal of the Optical Society of America : B, Optical physics}, volume = {31}, journal = {Journal of the Optical Society of America : B, Optical physics}, number = {11}, publisher = {Optical Society of America}, address = {Washington}, issn = {0740-3224}, doi = {10.1364/JOSAB.31.002846}, pages = {2846 -- 2857}, year = {2014}, abstract = {Dispersion engineering in silicon nitride (SiXNY) waveguides is investigated through the optimization of the waveguide transversal dimensions and refractive indices in a multicladding arrangement. Ultraflat dispersion of -84.0 +/- 0.5 ps/nm/km between 1700 and 2440 nm and 1.5 +/- 3 ps/nm/km between 1670 and 2500 nm is numerically demonstrated. It is shown that typical refractive index fluctuations as well as dimension fluctuations during fabrication of the SiXNY waveguides are a limitation for obtaining ultraflat dispersion profiles. Single- and multicladding waveguides are fabricated and their dispersion profiles measured (over nearly 1000 nm) using a low-coherence frequency domain interferometric technique. By appropriate thickness optimization, the zero-dispersion wavelength is tuned over a large spectral range in single-and multicladding waveguides with small refractive index contrast (3\%). A flat dispersion profile with +/- 3.2 ps/nm/km variation over 500 nm is obtained in a multicladding waveguide fabricated with a refractive index contrast of 37\%. Finally, we generate a nearly three-octave supercontinuum in this dispersion flattened multicladding SiXNY waveguide. (C) 2014 Optical Society of America}, language = {en} } @article{SchmaelzlinMoralejoRutowskaetal.2014, author = {Schmaelzlin, Elmar and Moralejo, Benito and Rutowska, Monika and Monreal-Ibero, Ana and Sandin, Christer and Tarcea, Nicolae and Popp, Juergen and Roth, Martin M.}, title = {Raman imaging with a fiber-coupled multichannel spectrograph}, series = {Sensors}, volume = {14}, journal = {Sensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s141121968}, pages = {21968 -- 21980}, year = {2014}, abstract = {Until now, spatially resolved Raman Spectroscopy has required to scan a sample under investigation in a time-consuming step-by-step procedure. Here, we present a technique that allows the capture of an entire Raman image with only one single exposure. The Raman scattering arising from the sample was collected with a fiber-coupled high-performance astronomy spectrograph. The probe head consisting of an array of 20 x 20 multimode fibers was linked to the camera port of a microscope. To demonstrate the high potential of this new concept, Raman images of reference samples were recorded. Entire chemical maps were received without the need for a scanning procedure.}, language = {en} } @article{BeisheimLiese2014, author = {Beisheim, Marianne and Liese, Andrea Margit}, title = {Summing up : key findings and avenues for future research}, isbn = {978-1-137-35925-0}, year = {2014}, language = {en} } @inproceedings{KnothKiy2014, author = {Knoth, Alexander Henning and Kiy, Alexander}, title = {(Self-)confident through the introductory study phase with the Reflect App}, series = {CEUR Workshop Proceedings}, booktitle = {CEUR Workshop Proceedings}, number = {1227}, publisher = {CEUR-WS}, address = {Freiburg}, issn = {1613-0073}, pages = {172 -- 179}, year = {2014}, language = {en} } @misc{ArniCaliendoKuennetal.2014, author = {Arni, Patrick and Caliendo, Marco and K{\"u}nn, Steffen and Zimmermann, Klaus F.}, title = {The IZA evaluation dataset survey}, series = {Postprints der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {122}, issn = {1867-5808}, doi = {10.25932/publishup-43520}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435204}, pages = {22}, year = {2014}, abstract = {This reference paper describes the sampling and contents of the IZA Evaluation Dataset Survey and outlines its vast potential for research in labor economics. The data have been part of a unique IZA project to connect administrative data from the German Federal Employment Agency with innovative survey data to study the out-mobility of individuals to work. This study makes the survey available to the research community as a Scientific Use File by explaining the development, structure, and access to the data. Furthermore, it also summarizes previous findings with the survey data.}, language = {en} } @article{BadalyanDierichStibaetal.2014, author = {Badalyan, Artavazd and Dierich, Marlen and Stiba, Konstanze and Schwuchow, Viola and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrical wiring of the aldehyde oxidoreductase PaoABC with a polymer containing osmium redox centers}, series = {Biosensors}, volume = {4}, journal = {Biosensors}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/bios4040403}, pages = {403 -- 421}, year = {2014}, abstract = {Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9\%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.}, language = {en} } @article{FritzschWangdosSantosetal.2014, author = {Fritzsch, Claire and Wang, Jing and dos Santos, Luara Ferreira and Mauritz, Karl-Heinz and Brunetti, Maddalena and Dohle, Christian}, title = {Different effects of the mirror illusion on motor and somatosensory processing}, series = {Restorative neurology and neuroscience}, volume = {32}, journal = {Restorative neurology and neuroscience}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {0922-6028}, doi = {10.3233/RNN-130343}, pages = {269 -- 280}, year = {2014}, abstract = {Purpose: Mirror therapy can improve motor and sensory functions, but effects of the mirror illusion on primary motor and somatosensory cortex could not be established consistently. Methods: Fifteen right handed healthy volunteers performed or observed a finger-thumb opposition task. Cerebral activations during normal movement (NOR), mirrored movement (MIR) and movement observation (OBS) by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Activation sizes in movement > static conditions were identified using SPM8 (p < 0.001, unc.) and attributed to predefined areas employing the Anatomy toolbox 1.8. Laterality indices for the responsive areas were calculated on the basis of the number of activated voxels. Results: Relevant bilateral BOLD responses were found in primary motor (M1) and somatosensory (S1 - BA 2, 3b and 3a) cortex, premotor and parietal areas and V5. When comparing MIR to NOR, no significant change of contralateral activation in M1 was found, but clearly at S1 with differences between hands. Conclusion: The mirror illusion does not elicit immediate changes in motor areas, yet there is a direct effect on somatosensory areas, especially for left hand movements. These results suggest different effects of mirror therapy on processing and rehabilitation of motor and sensory function.}, language = {en} }