@article{LevnajicPikovskij2014, author = {Levnajic, Zoran and Pikovskij, Arkadij}, title = {Untangling complex dynamical systems via derivative-variable correlations}, series = {Scientific reports}, volume = {4}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep05030}, pages = {6}, year = {2014}, abstract = {Inferring the internal interaction patterns of a complex dynamical system is a challenging problem. Traditional methods often rely on examining the correlations among the dynamical units. However, in systems such as transcription networks, one unit's variable is also correlated with the rate of change of another unit's variable. Inspired by this, we introduce the concept of derivative-variable correlation, and use it to design a new method of reconstructing complex systems (networks) from dynamical time series. Using a tunable observable as a parameter, the reconstruction of any system with known interaction functions is formulated via a simple matrix equation. We suggest a procedure aimed at optimizing the reconstruction from the time series of length comparable to the characteristic dynamical time scale. Our method also provides a reliable precision estimate. We illustrate the method's implementation via elementary dynamical models, and demonstrate its robustness to both model error and observation error.}, language = {en} } @article{ShinCherstvyMetzler2014, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Mixing and segregation of ring polymers: spatial confinement and molecular crowding effects}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/5/053047}, pages = {19}, year = {2014}, abstract = {During the life cycle of bacterial cells the non-mixing of the two ring-shaped daughter genomes is an important prerequisite for the cell division process. Mimicking the environments inside highly crowded biological cells, we study the dynamics and statistical behavior of two flexible ring polymers in the presence of cylindrical confinement and crowding molecules. From extensive computer simulations we determine the degree of ring-ring overlap and the number of inter-monomer contacts for varying volume fractions phi of crowders. We also examine the entropic demixing of polymer rings in the presence of mobile crowders and determine the characteristic times of the internal polymer dynamics. Effects of the ring length on ring-ring overlap are also analyzed. In particular, on systematic variation of the fraction of crowding molecules, a (1 - phi)-scaling is found for the ring-ring overlap length along the cylinder axis, and a non-monotonic dependence of the 3D ring-ring contact number with a maximum at phi approximate to 0.2 is obtained. Our results demonstrate that polymer rings are demixed and separated by particular entropy-favourable partitioning of crowders along the axis of the cylindrical simulation box. These findings help to rationalize the implications of macromolecular crowding for circular DNA molecules in confined spaces inside bacteria as well as in localized cellular compartments inside eukaryotic cells.}, language = {en} } @article{ToeroekKliemBergeretal.2014, author = {Toeroek, T. and Kliem, Bernhard and Berger, M. A. and Linton, M. G. and Demoulin, Pascal and van Driel-Gesztelyi, L.}, title = {The evolution of writhe in kink-unstable flux ropes and erupting filaments}, series = {Plasma physics and controlled fusion}, volume = {56}, journal = {Plasma physics and controlled fusion}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0741-3335}, doi = {10.1088/0741-3335/56/6/064012}, pages = {7}, year = {2014}, abstract = {The helical kink instability of a twisted magnetic flux tube has been suggested as a trigger mechanism for solar filament eruptions and coronal mass ejections (CMEs). In order to investigate if estimations of the pre-emptive twist can be obtained from observations of writhe in such events, we quantitatively analyze the conversion of twist into writhe in the course of the instability, using numerical simulations. We consider the line tied, cylindrically symmetric Gold-Hoyle flux rope model and measure the writhe using the formulae by Berger and Prior which express the quantity as a single integral in space. We find that the amount of twist converted into writhe does not simply scale with the initial flux rope twist, but depends mainly on the growth rates of the instability eigenmodes of higher longitudinal order than the basic mode. The saturation levels of the writhe, as well as the shapes of the kinked flux ropes, are very similar for considerable ranges of initial flux rope twists, which essentially precludes estimations of pre-eruptive twist from measurements of writhe. However, our simulations suggest an upper twist limit of similar to 6 pi for the majority of filaments prior to their eruption.}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2014, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, Matthias and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Mehault, J. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zabalza, V. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {TeV gamma-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with HESS}, series = {Monthly notices of the Royal Astronomical Society}, volume = {441}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {HESS Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stu459}, pages = {790 -- 799}, year = {2014}, abstract = {The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E > 0.1 TeV) gamma-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE gamma-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H. E. S. S. (High Energy Stereoscopic System) Cherenkov Telescope Array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analysed in the context of the multiwavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant gamma-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99 per cent confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index Gamma = 2.5 were set at 5.6 x 10(-1)3 cm(-2) s(-1) above 0.26 TeV and 3.2 x 10(-12) cm(-2) s(-1) above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to B-G1.9 greater than or similar to 12 mu G for G1.9+0.3 and to B-G330 greater than or similar to 8 mu G for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.}, language = {en} } @article{FoxWakkerBargeretal.2014, author = {Fox, Andrew J. and Wakker, Bart P. and Barger, Kathleen A. and Hernandez, Audra K. and Richter, Philipp and Lehner, Nicolas and Bland-Hawthorn, Joss and Charlton, Jane C. and Westmeier, Tobias and Thom, Christopher and Tumlinson, Jason and Misawa, Toru and Howk, J. Christopher and Haffner, L. Matthew and Ely, Justin and Rodriguez-Hidalgo, Paola and Kumari, Nimisha}, title = {The COS/UVES absorption survey of the magellanic stream. III. Ionization, total mass, and inflow rate onto the milky way}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {787}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/787/2/147}, pages = {31}, year = {2014}, abstract = {Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 degrees of the 21 cm emitting regions. We find that 81\% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is approximate to 11,000 deg(2), or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be approximate to 2.0 x 10(9) M-circle dot (d/55 kpc)(2), with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of similar to 0.5-1.0 Gyr, it will represent an average inflow rate of similar to 3.7-6.7 M-circle dot yr(-1), potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona.}, language = {en} } @article{AliuArchambaultAuneetal.2014, author = {Aliu, E. and Archambault, S. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dumm, J. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McCann, A. J. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Rajotte, J. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Sembroski, G. H. and Shahinyan, K. and Sheidaei, F. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tsurusaki, K. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Welsing, R. and Wilhelm, Alina}, title = {Investigating the TeV morpholoy of MGRO J1908+06 with veritas}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {787}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/787/2/166}, pages = {7}, year = {2014}, abstract = {We report on deep observations of the extended TeV gamma-ray source MGRO J1908+06 made with the VERITAS very high energy gamma-ray observatory. Previously, the TeV emission has been attributed to the pulsar wind nebula (PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a significance level of 14 standard deviations (14 sigma) and measure a photon index of 2.20 +/- 0.10(stat) +/- 0.20(sys). The TeV emission is extended, covering the region near PSR J1907+0602 and also extending toward SNR G40.5-0.5. When fitted with a two-dimensional Gaussian, the intrinsic extension has a standard deviation of sigma(src) = 0 degrees.44 +/- 0 degrees.02. In contrast to other TeV PWNe of similar age in which the TeV spectrum softens with distance from the pulsar, the TeV spectrum measured near the pulsar location is consistent with that measured at a position near the rim of G40.5-0.5, 0 degrees.33 away.}, language = {en} } @article{ZaritskyCourtoisMunozMateosetal.2014, author = {Zaritsky, Dennis and Courtois, Helene and Munoz-Mateos, Juan-Carlos and Sorce, Jenny and Erroz-Ferrer, S. and Comeron, S. and Gadotti, D. A. and Gil De Paz, A. and Hinz, J. L. and Laurikainen, E. and Kim, T. and Laine, J. and Menendez-Delmestre, K. and Mizusawa, T. and Regan, M. W. and Salo, H. and Seibert, M. and Sheth, K. and Athanassoula, E. and Bosma, A. and Cisternas, M. and Ho, Luis C. and Holwerda, B.}, title = {The baryonic Tully-Fisher relationship for S(4)G galaxies and the "condensed" baryon fraction of galaxies}, series = {The astronomical journal}, volume = {147}, journal = {The astronomical journal}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-6256}, doi = {10.1088/0004-6256/147/6/134}, pages = {11}, year = {2014}, abstract = {We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of Hi spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, which we find to be 3.5 +/- 0.2 (Delta log M-baryon/Delta log v(c)), implies that on average a nearly constant fraction (similar to 0.4) of all baryons expected to be in a halo are "condensed" onto the central region of rotationally supported galaxies. The condensed baryon fraction, M-baryon/M-total, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, vc, between 60 and 250 km s(-1), but is extended to v(c) similar to 10 km s(-1) using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally <= a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v(c) < 250 km s(-1) and typically introduce no more than a factor of two range in the resulting M-baryon/M-total. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the BTF holds great promise, but awaits improved determinations of the stellar masses.}, language = {en} } @article{MengelLevermann2014, author = {Mengel, Matthias and Levermann, Anders}, title = {Ice plug prevents irreversible discharge from East Antarctica}, series = {Nature climate change}, volume = {4}, journal = {Nature climate change}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/NCLIMATE2226}, pages = {451 -- 455}, year = {2014}, abstract = {Changes in ice discharge from Antarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its marine basins(1). Most of West Antarctica's marine ice sheet lies on an inland-sloping bed(2) and is thereby prone to a marine ice sheet instability(3-5). A similar topographic configuration is found in large parts of East Antarctica, which holds marine ice equivalent to 19 m of global sea-level rise(6), that is, more than five times that of West Antarctica. Within East Antarctica, the Wilkes Basin holds the largest volume of marine ice that is fully connected by subglacial troughs. This ice body was significantly reduced during the Pliocene epoch(7). Strong melting underneath adjacent ice shelves with similar bathymetry(8) indicates the ice sheet's sensitivity to climatic perturbations. The stability of the Wilkes marine ice sheet has not been the subject of any comprehensive assessment of future sea level. Using recently improved topographic data(6) in combination with ice-dynamic simulations, we show here that the removal of a specific coastal ice volume equivalent to less than 80 mm of global sea-level rise at the margin of the Wilkes Basin destabilizes the regional ice flow and leads to a self-sustained discharge of the entire basin and a global sea-level rise of 3-4 m. Our results are robust with respect to variation in ice parameters, forcing details and model resolution as well as increased surface mass balance, indicating that East Antarctica may become a large contributor to future sea-level rise on timescales beyond a century.}, language = {en} } @article{VlasovMacauPikovskij2014, author = {Vlasov, Vladimir and Macau, Elbert E. N. and Pikovskij, Arkadij}, title = {Synchronization of oscillators in a Kuramoto-type model with generic coupling}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {24}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.4880835}, pages = {7}, year = {2014}, abstract = {We study synchronization properties of coupled oscillators on networks that allow description in terms of global mean field coupling. These models generalize the standard Kuramoto-Sakaguchi model, allowing for different contributions of oscillators to the mean field and to different forces from the mean field on oscillators. We present the explicit solutions of self-consistency equations for the amplitude and frequency of the mean field in a parametric form, valid for noise-free and noise-driven oscillators. As an example, we consider spatially spreaded oscillators for which the coupling properties are determined by finite velocity of signal propagation. (C) 2014 AIP Publishing LLC.}, language = {en} } @article{Mulansky2014, author = {Mulansky, Mario}, title = {Scaling of chaos in strongly nonlinear lattices}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {24}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.4868259}, pages = {6}, year = {2014}, abstract = {Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established. (C) 2014 AIP Publishing LLC.}, language = {en} }