@article{AgadaChenGeigeretal.2014, author = {Agada, S. and Chen, F. and Geiger, S. and Toigulova, G. and Agar, Susan M. and Shekhar, R. and Benson, Gregory S. and Hehmeyer, O. and Amour, Fr{\´e}d{\´e}ric and Mutti, Maria and Christ, Nicolas and Immenhauser, A.}, title = {Numerical simulation of fluid-flow processes in a 3D high-resolution carbonate reservoir analogue}, series = {Petroleum geoscience}, volume = {20}, journal = {Petroleum geoscience}, number = {1}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {1354-0793}, doi = {10.1144/petgeo2012-096}, pages = {125 -- 142}, year = {2014}, abstract = {A high-resolution three-dimensional (3D) outcrop model of a Jurassic carbonate ramp was used in order to perform a series of detailed and systematic flow simulations. The aim of this study was to test the impact of small- and large-scale geological features on reservoir performance and oil recovery. The digital outcrop model contains a wide range of sedimentological, diagenetic and structural features, including discontinuity surfaces, shoal bodies, mud mounds, oyster bioherms and fractures. Flow simulations are performed for numerical well testing and secondary oil recovery. Numerical well testing enables synthetic but systematic pressure responses to be generated for different geological features observed in the outcrops. This allows us to assess and rank the relative impact of specific geological features on reservoir performance. The outcome documents that, owing to the realistic representation of matrix heterogeneity, most diagenetic and structural features cannot be linked to a unique pressure signature. Instead, reservoir performance is controlled by subseismic faults and oyster bioherms acting as thief zones. Numerical simulations of secondary recovery processes reveal strong channelling of fluid flow into high-permeability layers as the primary control for oil recovery. However, appropriate reservoir-engineering solutions, such as optimizing well placement and injection fluid, can reduce channelling and increase oil recovery.}, language = {en} } @article{ShekharSahniBensonetal.2014, author = {Shekhar, R. and Sahni, I. and Benson, Gregory S. and Agar, Susan M. and Amour, Fr{\´e}d{\´e}ric and Tomas, Sara and Christ, Nicolas and Alway, Robert and Mutti, Maria and Immenhauser, A. and Karcz, Z. and Kabiri, L.}, title = {Modelling and simulation of a Jurassic carbonate ramp outcrop, Amellago, High Atlas Mountains, Morocco}, series = {Petroleum geoscience}, volume = {20}, journal = {Petroleum geoscience}, number = {1}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {1354-0793}, doi = {10.1144/petgeo2013-010}, pages = {109 -- 123}, year = {2014}, abstract = {Carbonate reservoirs pose significant challenges for reservoir modelling and flow prediction due to heterogeneities in rock properties, limits to seismic resolution and limited constraints on subsurface data. Hence, a systematic and streamlined approach is needed to construct geological models and to quickly evaluate key sensitivities in the flow models. This paper discusses results from a reservoir analogue study of a Middle Jurassic carbonate ramp in the High Atlas Mountains of Morocco that has stratigraphic and structural similarities to selected Middle East reservoirs. For this purpose, high-resolution geological models were constructed from the integration of sedimentological, diagenetic and structural studies in the area. The models are approximately 1200 x 1250 m in size, and only faults (no fractures) with offsets greater than 1 m are included. Novel methods have been applied to test the response of flow simulations to the presence or absence of specific geological features, including proxies for hardgrounds, stylolites, patch reefs, and mollusc banks, as a way to guide the level of detail that is suitable for modelling objectives. Our general conclusion from the study is that the continuity of any geological feature with extreme permeability (high or low) has the most significant impact on flow.}, language = {en} } @article{WhitakerFelceBensonetal.2014, author = {Whitaker, F. F. and Felce, G. P. and Benson, Gregory S. and Amour, Fr{\´e}d{\´e}ric and Mutti, Maria and Smart, P. L.}, title = {Simulating flow through forward sediment model stratigraphies: insights into climatic control of reservoir quality in isolated carbonate platforms}, series = {Petroleum geoscience}, volume = {20}, journal = {Petroleum geoscience}, number = {1}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {1354-0793}, doi = {10.1144/petgeo2013-026}, pages = {27 -- 40}, year = {2014}, abstract = {Whilst sophisticated multiphase fluid flow models are routinely employed to understand behaviour of oil and gas reservoirs, high-resolution data describing the three-dimensional (3D) distribution of rock characteristics is rarely available to populate models. We present a new approach to developing a quantitative understanding of the effect of individual controls on the distribution of petrophysical properties and their impact on fluid flow. This involves simulating flow through high-detail permeability architectures generated by forward modelling of the coupled depositional-diagenetic evolution of isolated platforms using CARB3D(+). This workflow is exemplified by an investigation of interactions between subsidence and climate, and their expression in spatial variations in reservoir quality in an isolated carbonate platform of similar size and subsidence history to the Triassic Latemar Platform. Dissolutional lowering during subaerial exposure controls platform-top graininess via platform top hydrodynamics during the subsequent transgression. Dissolved carbonate is reprecipitated as cements by percolating meteoric waters. However, associated subsurface meteoric dissolution generates significant secondary porosity under a more humid climate. Slower subsidence enhances diagenetic overprinting during repeated exposure events. Single-phase streamline simulations show how early diagenesis develops more permeable fairways within the finer-grained condensed units that can act as thief zones for flow from the grainier but less diagenetically altered cyclic units.}, language = {en} }