@article{CherstvyPetrov2014, author = {Cherstvy, Andrey G. and Petrov, Eugene P.}, title = {Modeling DNA condensation on freestanding cationic lipid membranes}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c3cp53433b}, pages = {2020 -- 2037}, year = {2014}, abstract = {Motivated by recent experimental observations of a rapid spontaneous DNA coil-globule transition on freestanding cationic lipid bilayers, we propose simple theoretical models for DNA condensation on cationic lipid membranes. First, for a single DNA rod, we examine the conditions of full wrapping of a cylindrical DNA-like semi-flexible polyelectrolyte by an oppositely charged membrane. Then, for two parallel DNA rods, we self-consistently analyze the shape and the extent of the membrane enveloping them, focusing on membrane elastic deformations and the membrane-DNA embracing angle, which enables us to compute the membrane-mediated DNA-DNA interactions. We examine the effects of the membrane composition and its charge density, which are the experimentally tunable parameters. We show that membrane-driven rod-rod attraction is more pronounced for higher charge densities and for smaller surface tensions of the membrane. Thus, we demonstrate that for a long DNA chain adhered to a cationic lipid membrane, such membrane-induced DNA-DNA attraction can trigger compaction of DNA.}, language = {en} }