@phdthesis{Bathke2014, author = {Bathke, Hannes}, title = {An investigation of complex deformation patterns detected by using InSAR at Llaima and Tend{\"u}rek volcanoes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70522}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Surface displacement at volcanic edifices is related to subsurface processes associated with magma movements, fluid transfers within the volcano edifice and gravity-driven deformation processes. Understanding of associated ground displacements is of importance for assessment of volcanic hazards. For example, volcanic unrest is often preceded by surface uplift, caused by magma intrusion and followed by subsidence, after the withdrawal of magma. Continuous monitoring of the surface displacement at volcanoes therefore might allow the forecasting of upcoming eruptions to some extent. In geophysics, the measured surface displacements allow the parameters of possible deformation sources to be estimated through analytical or numerical modeling. This is one way to improve the understanding of subsurface processes acting at volcanoes. Although the monitoring of volcanoes has significantly improved in the last decades (in terms of technical advancements and number of monitored volcanoes), the forecasting of volcanic eruptions remains puzzling. In this work I contribute towards the understanding of the subsurface processes at volcanoes and thus to the improvement of volcano eruption forecasting. I have investigated the displacement field of Llaima volcano in Chile and of Tend{\"u}rek volcano in East Turkey by using synthetic aperture radar interferometry (InSAR). Through modeling of the deformation sources with the extracted displacement data, it was possible to gain insights into potential subsurface processes occurring at these two volcanoes that had been barely studied before. The two volcanoes, although of very different origin, composition and geometry, both show a complexity of interacting deformation sources. At Llaima volcano, the InSAR technique was difficult to apply, due to the large decorrelation of the radar signal between the acquisition of images. I developed a model-based unwrapping scheme, which allows the production of reliable displacement maps at the volcano that I used for deformation source modeling. The modeling results show significant differences in pre- and post-eruptive magmatic deformation source parameters. Therefore, I conjecture that two magma chambers exist below Llaima volcano: a post-eruptive deep one and a shallow one possibly due to the pre-eruptive ascent of magma. Similar reservoir depths at Llaima have been confirmed by independent petrologic studies. These reservoirs are interpreted to be temporally coupled. At Tend{\"u}rek volcano I have found long-term subsidence of the volcanic edifice, which can be described by a large, magmatic, sill-like source that is subject to cooling contraction. The displacement data in conjunction with high-resolution optical images, however, reveal arcuate fractures at the eastern and western flank of the volcano. These are most likely the surface expressions of concentric ring-faults around the volcanic edifice that show low magnitudes of slip over a long time. This might be an alternative mechanism for the development of large caldera structures, which are so far assumed to be generated during large catastrophic collapse events. To investigate the potential subsurface geometry and relation of the two proposed interacting sources at Tend{\"u}rek, a sill-like magmatic source and ring-faults, I have performed a more sophisticated numerical modeling approach. The optimum source geometries show, that the size of the sill-like source was overestimated in the simple models and that it is difficult to determine the dip angle of the ring-faults with surface displacement data only. However, considering physical and geological criteria a combination of outward-dipping reverse faults in the west and inward-dipping normal faults in the east seem to be the most likely. Consequently, the underground structure at the Tend{\"u}rek volcano consists of a small, sill-like, contracting, magmatic source below the western summit crater that causes a trapdoor-like faulting along the ring-faults around the volcanic edifice. Therefore, the magmatic source and the ring-faults are also interpreted to be temporally coupled. In addition, a method for data reduction has been improved. The modeling of subsurface deformation sources requires only a relatively small number of well distributed InSAR observations at the earth's surface. Satellite radar images, however, consist of several millions of these observations. Therefore, the large amount of data needs to be reduced by several orders of magnitude for source modeling, to save computation time and increase model flexibility. I have introduced a model-based subsampling approach in particular for heterogeneously-distributed observations. It allows a fast calculation of the data error variance-covariance matrix, also supports the modeling of time dependent displacement data and is, therefore, an alternative to existing methods.}, language = {en} } @phdthesis{Borchardt2014, author = {Borchardt, Sven}, title = {Rainfall, weathering and erosion}, pages = {x, 90}, year = {2014}, language = {en} } @phdthesis{Cao2014, author = {Cao, Xianyong}, title = {Vegetation and climate change in eastern continental Asia during the last 22 ka inferred from pollen data synthesis}, pages = {156}, year = {2014}, language = {en} } @phdthesis{Feld2014, author = {Feld, Christian}, title = {Crustal structure of the Eratosthenes Seamount, Cyprus and S. Turkey from an amphibian wide-angle seismic profile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73479}, school = {Universit{\"a}t Potsdam}, pages = {xi, 131}, year = {2014}, abstract = {In March 2010, the project CoCoCo (incipient COntinent-COntinent COllision) recorded a 650 km long amphibian N-S wide-angle seismic profile, extending from the Eratosthenes Seamount (ESM) across Cyprus and southern Turkey to the Anatolian plateau. The aim of the project is to reveal the impact of the transition from subduction to continent-continent collision of the African plate with the Cyprus-Anatolian plate. A visual quality check, frequency analysis and filtering were applied to the seismic data and reveal a good data quality. Subsequent first break picking, finite-differences ray tracing and inversion of the offshore wide-angle data leads to a first-arrival tomographic model. This model reveals (1) P-wave velocities lower than 6.5 km/s in the crust, (2) a variable crustal thickness of about 28 - 37 km and (3) an upper crustal reflection at 5 km depth beneath the ESM. Two land shots on Turkey, also recorded on Cyprus, airgun shots south of Cyprus and geological and previous seismic investigations provide the information to derive a layered velocity model beneath the Anatolian plateau and for the ophiolite complex on Cyprus. The analysis of the reflections provides evidence for a north-dipping plate subducting beneath Cyprus. The main features of this layered velocity model are (1) an upper and lower crust with large lateral changes of the velocity structure and thickness, (2) a Moho depth of about 38 - 45 km beneath the Anatolian plateau, (3) a shallow north-dipping subducting plate below Cyprus with an increasing dip and (4) a typical ophiolite sequence on Cyprus with a total thickness of about 12 km. The offshore-onshore seismic data complete and improve the information about the velocity structure beneath Cyprus and the deeper part of the offshore tomographic model. Thus, the wide-angle seismic data provide detailed insights into the 2-D geometry and velocity structures of the uplifted and overriding Cyprus-Anatolian plate. Subsequent gravity modelling confirms and extends the crustal P-wave velocity model. The deeper part of the subducting plate is constrained by the gravity data and has a dip angle of ~ 28°. Finally, an integrated analysis of the geophysical and geological information allows a comprehensive interpretation of the crustal structure related to the collision process.}, language = {en} } @phdthesis{Gassmoeller2014, author = {Gaßm{\"o}ller, Ren{\´e}}, title = {The interaction of subducted slabs and plume generation zones in geodynamic models}, school = {Universit{\"a}t Potsdam}, pages = {158}, year = {2014}, language = {en} } @phdthesis{Grigoli2014, author = {Grigoli, Francesco}, title = {Automated seismic event location by waveform coherence analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70329}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Automated location of seismic events is a very important task in microseismic monitoring operations as well for local and regional seismic monitoring. Since microseismic records are generally characterised by low signal-to-noise ratio, such methods are requested to be noise robust and sufficiently accurate. Most of the standard automated location routines are based on the automated picking, identification and association of the first arrivals of P and S waves and on the minimization of the residuals between theoretical and observed arrival times of the considered seismic phases. Although current methods can accurately pick P onsets, the automatic picking of the S onset is still problematic, especially when the P coda overlaps the S wave onset. In this thesis I developed a picking free automated method based on the Short-Term-Average/Long-Term-Average (STA/LTA) traces at different stations as observed data. I used the STA/LTA of several characteristic functions in order to increase the sensitiveness to the P wave and the S waves. For the P phases we use the STA/LTA traces of the vertical energy function, while for the S phases, we use the STA/LTA traces of the horizontal energy trace and then a more optimized characteristic function which is obtained using the principal component analysis technique. The orientation of the horizontal components can be retrieved by robust and linear approach of waveform comparison between stations within a network using seismic sources outside the network (chapter 2). To locate the seismic event, we scan the space of possible hypocentral locations and origin times, and stack the STA/LTA traces along the theoretical arrival time surface for both P and S phases. Iterating this procedure on a three-dimensional grid we retrieve a multidimensional matrix whose absolute maximum corresponds to the spatial and temporal coordinates of the seismic event. Location uncertainties are then estimated by perturbing the STA/LTA parameters (i.e the length of both long and short time windows) and relocating each event several times. In order to test the location method I firstly applied it to a set of 200 synthetic events. Then we applied it to two different real datasets. A first one related to mining induced microseismicity in a coal mine in the northern Germany (chapter 3). In this case we successfully located 391 microseismic event with magnitude range between 0.5 and 2.0 Ml. To further validate the location method I compared the retrieved locations with those obtained by manual picking procedure. The second dataset consist in a pilot application performed in the Campania-Lucania region (southern Italy) using a 33 stations seismic network (Irpinia Seismic Network) with an aperture of about 150 km (chapter 4). We located 196 crustal earthquakes (depth < 20 km) with magnitude range 1.1 < Ml < 2.7. A subset of these locations were compared with accurate locations retrieved by a manual location procedure based on the use of a double difference technique. In both cases results indicate good agreement with manual locations. Moreover, the waveform stacking location method results noise robust and performs better than classical location methods based on the automatic picking of the P and S waves first arrivals.}, language = {en} } @phdthesis{Liebs2014, author = {Liebs, G{\"o}ran}, title = {Ground penetration radar wave velocities and their uncertainties}, doi = {10.25932/publishup-43680}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436807}, school = {Universit{\"a}t Potsdam}, pages = {ii, 106}, year = {2014}, abstract = {We develop three new approaches for ground penetration wave velocity calcultaions. The first is based on linear moveout spectra to find the optimum ground wave velocity including uncertainties from multi-offset data gathers. We used synthetic data to illustrate the principles of the method and to investigate uncertainties in ground wave velocity estimates. To demonstrate the applicability of the approach to real data, we analyzed GPR data sets recorded at field sites in Canada over an annual cycle from Steelman \& Endres [2010]. The results obtained by this efficient and largely automated procedure agree well with the manual achieved results of Steelman \& Endres [2010], derived by a more laborious largely manual analysis strategy. Then we develop a second methodology to global invert reflection traveltimes with a particle swarm optimization approach more precise then conventional spectral NMO-based velocity analysis (e.g., Greaves et al. [1996]). For global optimization, we use particle swarm optimization (PSO; Kennedy \& Eberhart [1995]) in the combination with a fast eikonal solver as forward solver (Sethian [1996]; Fomel [1997a]; Sethian \& Popovici [1999]). This methodology allows us to generate reliability CMP derived models of subsurface velocities and water content including uncertainties. We test this method with synthetic data to study the behavior of the PSO algorithm. Afterward, We use this method to analyze our field data from a well constrained test site in Horstwalde, Germany. The achieved velocity models from field data showed good agreement to borehole logging and direct-push data (Schmelzbach et al. [2011]) at the same site position. For the third method we implement a global optimization approach also based on PSO to invert direct-arrival traveltimes of VRP data to obtain high resolution 1D velocity models including quantitative estimates of uncertainty. Our intensive tests with several traveltime data sets helped to understand the behavior of PSO algorithm for inversion. Integration of the velocity model to VRP reflection imaging and attenuation model improved the potential of VRP surveying. Using field data, we examine this novel analysis strategy for the development of petrophysical models and the linking between GPR borehole and other logging data to surface GPR reflection data.}, language = {de} } @phdthesis{Maghsoudi2014, author = {Maghsoudi, Samira}, title = {Spatiotemporal microseismicity patterns and detection performance in mining environments}, address = {Potsdam}, pages = {104 S.}, year = {2014}, language = {en} } @phdthesis{Muksin2014, author = {Muksin, Umar}, title = {A fault-controlled geothermal system in Tarutung (North Sumatra, Indonesia)investigated by seismological analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72065}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {The seismic structure (Vp, Vp/Vs, and Qp anomalies) contributes to the physical properties and the lithology of rocks and possible fluid distribution in the region. The Vp model images the geometry of the Tarutung and the Sarulla basins. Both basins have a depth of around 2.0 km. High Vp/Vs and high attenuation (low Qp) anomalies are observed along the Sarulla graben associated with a weak zone caused by volcanic activities along the graben. Low Vp/Vs and low conductivity anomalies are found in the west of the Tarutung basin. This anomaly is interpreted as dry, compact, and rigid granitic rock in the region as also found by geological observations. Low Vp, high Vp/Vs and low Qp anomalies are found at the east of the Tarutung basin which appear to be associated with the three big geothermal manifestations in Sipoholon, Hutabarat, and Panabungan area. These anomalies are connected with high Vp/Vs and low Qp anomalies below the Tarutung basin at depth of around 3 - 10 km. This suggests that these geothermal manifestations are fed by the same source of the hot fluid below the Tarutung basin. The hot fluids from below the Tarutung basin propagate to the more dilatational and more permeable zone in the northeast. Granite found in the west of the Tarutung basin could also be abundant underneath the basin at a certain depth so that it prevents the hot fluid to be transported directly to the Tarutung basin. High seismic attenuation and low Vp/Vs anomalies are found in the southwest of the Tarutung basin below the Martimbang volcano. These anomalies are associated with hot rock below the volcano without or with less amount of partial melting. There is no indication that the volcano controls the geothermal system around the Tarutung basin. The geothermal resources around the Tarutung basin is a fault-controlled system as a result of deep circulation of fluids. Outside of the basin, the seismicity delineation and the focal mechanism correlate with the shape and the characteristics of the strike-slip Sumatran fault. Within the Tarutung basin, the seismicity is distributed more broadly which coincides with the margin of the basin. An extensional duplex system in the Tarutung basin is derived from the seismicity and focal mechanism analysis which is also consistent with the geological observations. The vertical distribution of the seismicity suggests the presence of a negative flower structure within the Tarutung basin.}, language = {de} } @phdthesis{Munack2014, author = {Munack, Henry}, title = {From phantom blocks to denudational noise}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-72629}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 172}, year = {2014}, abstract = {Knowing the rates and mechanisms of geomorphic process that shape the Earth's surface is crucial to understand landscape evolution. Modern methods for estimating denudation rates enable us to quantitatively express and compare processes of landscape downwearing that can be traced through time and space—from the seemingly intact, though intensely shattered, phantom blocks of the catastrophically fragmented basal facies of giant rockslides up to denudational noise in orogen-wide data sets averaging over several millennia. This great variety of spatiotemporal scales of denudation rates is both boon and bane of geomorphic process rates. Indeed, processes of landscape downwearing can be traced far back in time, helping us to understand the Earth's evolution. Yet, this benefit may turn into a drawback due to scaling issues if these rates are to be compared across different observation timescales. This thesis investigates the mechanisms, patterns and rates of landscape downwearing across the Himalaya-Tibet orogen. Accounting for the spatiotemporal variability of denudation processes, this thesis addresses landscape downwearing on three distinctly different spatial scales, starting off at the local scale of individual hillslopes where considerable amounts of debris are generated from rock instantaneously: Rocksliding in active mountains is a major impetus of landscape downwearing. Study I provides a systematic overview of the internal sedimentology of giant rockslide deposits and thus meets the challenge of distinguishing them from macroscopically and microscopically similar glacial deposits, tectonic fault-zone breccias, and impact breccias. This distinction is important to avoid erroneous or misleading deduction of paleoclimatic or tectonic implications. -> Grain size analysis shows that rockslide-derived micro-breccia closely resemble those from meteorite impact or tectonic faults. -> Frictionite may occur more frequently that previously assumed. -> M{\"o}ssbauer-spectroscopy derived results indicate basal rock melting in the absence of water, involving short-term temperatures of >1500°C. Zooming out, Study II tracks the fate of these sediments, using the example of the upper Indus River, NW India. There we use river sand samples from the Indus and its tributaries to estimate basin-averaged denudation rates along a ~320-km reach across the Tibetan Plateau margin, to answer the question whether incision into the western Tibetan Plateau margin is currently active or not. -> We find an about one-order-of-magnitude upstream decay—from 110 to 10 mm kyr^-1—of cosmogenic Be-10-derived basin-wide denudation rates across the morphological knickpoint that marks the transition from the Transhimalayan ranges to the Tibetan Plateau. This trend is corroborated by independent bulk petrographic and heavy mineral analysis of the same samples. -> From the observation that tributary-derived basin-wide denudation rates do not increase markedly until ~150-200 km downstream of the topographic plateau margin we conclude that incision into the Tibetan Plateau is inactive. -> Comparing our postglacial Be-10-derived denudation rates to long-term (>10^6 yr) estimates from low-temperature thermochronometry, ranging from 100 to 750 mm kyr^-1, points to an order- of-magnitude decay of rates of landscape downwearing towards present. We infer that denudation rates must have been higher in the Quaternary, probably promoted by the interplay of glacial and interglacial stages. Our investigation of regional denudation patterns in the upper Indus finally is an integral part of Study III that synthesizes denudation of the Himalaya-Tibet orogen. In order to identify general and time-invariant predictors for Be-10-derived denudation rates we analyze tectonic, climatic and topographic metrics from an inventory of 297 drainage basins from various parts of the orogen. Aiming to get insight to the full response distributions of denudation rate to tectonic, climatic and topographic candidate predictors, we apply quantile regression instead of ordinary least squares regression, which has been standard analysis tool in previous studies that looked for denudation rate predictors. -> We use principal component analysis to reduce our set of 26 candidate predictors, ending up with just three out of these: Aridity Index, topographic steepness index, and precipitation of the coldest quarter of the year. -> Topographic steepness index proves to perform best during additive quantile regression. Our consequent prediction of denudation rates on the basin scale involves prediction errors that remain between 5 and 10 mm kyr^-1. -> We conclude that while topographic metrics such as river-channel steepness and slope gradient—being representative on timescales that our cosmogenic Be-10-derived denudation rates integrate over—generally appear to be more suited as predictors than climatic and tectonic metrics based on decadal records.}, language = {en} }