@article{HanneSekerinaVasishthetal.2011, author = {Hanne, Sandra and Sekerina, Irina A. and Vasishth, Shravan and Burchert, Frank and De Bleser, Ria}, title = {Chance in agrammatic sentence comprehension what does it really mean? Evidence from eye movements of German agrammatic aphasic patients}, series = {Aphasiology : an international, interdisciplinary journal}, volume = {25}, journal = {Aphasiology : an international, interdisciplinary journal}, number = {2}, publisher = {Wiley}, address = {Hove}, issn = {0268-7038}, doi = {10.1080/02687038.2010.489256}, pages = {221 -- 244}, year = {2011}, abstract = {Background: In addition to the canonical subject-verb-object (SVO) word order, German also allows for non-canonical order (OVS), and the case-marking system supports thematic role interpretation. Previous eye-tracking studies (Kamide et al., 2003; Knoeferle, 2007) have shown that unambiguous case information in non-canonical sentences is processed incrementally. For individuals with agrammatic aphasia, comprehension of non-canonical sentences is at chance level (Burchert et al., 2003). The trace deletion hypothesis (Grodzinsky 1995, 2000) claims that this is due to structural impairments in syntactic representations, which force the individual with aphasia (IWA) to apply a guessing strategy. However, recent studies investigating online sentence processing in aphasia (Caplan et al., 2007; Dickey et al., 2007) found that divergences exist in IWAs' sentence-processing routines depending on whether they comprehended non-canonical sentences correctly or not, pointing rather to a processing deficit explanation. Aims: The aim of the current study was to investigate agrammatic IWAs' online and offline sentence comprehension simultaneously in order to reveal what online sentence-processing strategies they rely on and how these differ from controls' processing routines. We further asked whether IWAs' offline chance performance for non-canonical sentences does indeed result from guessing. Methods Procedures: We used the visual-world paradigm and measured eye movements (as an index of online sentence processing) of controls (N = 8) and individuals with aphasia (N = 7) during a sentence-picture matching task. Additional offline measures were accuracy and reaction times. Outcomes Results: While the offline accuracy results corresponded to the pattern predicted by the TDH, IWAs' eye movements revealed systematic differences depending on the response accuracy. Conclusions: These findings constitute evidence against attributing IWAs' chance performance for non-canonical structures to mere guessing. Instead, our results support processing deficit explanations and characterise the agrammatic parser as deterministic and inefficient: it is slowed down, affected by intermittent deficiencies in performing syntactic operations, and fails to compute reanalysis even when one is detected.}, language = {en} } @article{SinnEngbert2011, author = {Sinn, Petra and Engbert, Ralf}, title = {Saccadic facilitation by modulation of microsaccades in natural backgrounds}, series = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, volume = {73}, journal = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1943-3921}, doi = {10.3758/s13414-011-0107-9}, pages = {1029 -- 1033}, year = {2011}, abstract = {Saccades move objects of interest into the center of the visual field for high-acuity visual analysis. White, Stritzke, and Gegenfurtner (Current Biology, 18, 124-128, 2008) have shown that saccadic latencies in the context of a structured background are much shorter than those with an unstructured background at equal levels of visibility. This effect has been explained by possible preactivation of the saccadic circuitry whenever a structured background acts as a mask for potential saccade targets. Here, we show that background textures modulate rates of microsaccades during visual fixation. First, after a display change, structured backgrounds induce a stronger decrease of microsaccade rates than do uniform backgrounds. Second, we demonstrate that the occurrence of a microsaccade in a critical time window can delay a subsequent saccadic response. Taken together, our findings suggest that microsaccades contribute to the saccadic facilitation effect, due to a modulation of microsaccade rates by properties of the background.}, language = {en} } @article{vonderMalsburgVasishth2011, author = {von der Malsburg, Titus Raban and Vasishth, Shravan}, title = {What is the scanpath signature of syntactic reanalysis?}, series = {Journal of memory and language}, volume = {65}, journal = {Journal of memory and language}, number = {2}, publisher = {Elsevier}, address = {San Diego}, issn = {0749-596X}, doi = {10.1016/j.jml.2011.02.004}, pages = {109 -- 127}, year = {2011}, abstract = {Which repair strategy does the language system deploy when it gets garden-pathed, and what can regressive eye movements in reading tell us about reanalysis strategies? Several influential eye-tracking studies on syntactic reanalysis (Frazier \& Rayner, 1982; Meseguer, Carreiras, \& Clifton, 2002; Mitchell, Shen, Green, \& Hodgson, 2008) have addressed this question by examining scanpaths, i.e., sequential patterns of eye fixations. However, in the absence of a suitable method for analyzing scanpaths, these studies relied on simplified dependent measures that are arguably ambiguous and hard to interpret. We address the theoretical question of repair strategy by developing a new method that quantifies scanpath similarity. Our method reveals several distinct fixation strategies associated with reanalysis that went undetected in a previously published data set (Meseguer et al., 2002). One prevalent pattern suggests re-parsing of the sentence, a strategy that has been discussed in the literature (Frazier \& Rayner, 1982); however, readers differed tremendously in how they orchestrated the various fixation strategies. Our results suggest that the human parsing system non-deterministically adopts different strategies when confronted with the disambiguating material in garden-path sentences.}, language = {en} } @article{ApelRevieCangelosietal.2011, author = {Apel, Jens K. and Revie, Gavin F. and Cangelosi, Angelo and Ellis, Rob and Goslin, Jeremy and Fischer, Martin H.}, title = {Attention deployment during memorizing and executing complex instructions}, series = {Experimental brain research}, volume = {214}, journal = {Experimental brain research}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-011-2827-4}, pages = {249 -- 259}, year = {2011}, abstract = {We investigated the mental rehearsal of complex action instructions by recording spontaneous eye movements of healthy adults as they looked at objects on a monitor. Participants heard consecutive instructions, each of the form "move [object] to [location]''. Instructions were only to be executed after a go signal, by manipulating all objects successively with a mouse. Participants re-inspected previously mentioned objects already while listening to further instructions. This rehearsal behavior broke down after 4 instructions, coincident with participants' instruction span, as determined from subsequent execution accuracy. These results suggest that spontaneous eye movements while listening to instructions predict their successful execution.}, language = {en} }