@article{StoofLeichsenringJungingerOlakaetal.2011, author = {Stoof-Leichsenring, Kathleen Rosemarie and Junginger, Annett and Olaka, Lydia A. and Tiedemann, Ralph and Trauth, Martin H.}, title = {Environmental variability in Lake Naivasha, Kenya, over the last two centuries}, series = {Journal of paleolimnolog}, volume = {45}, journal = {Journal of paleolimnolog}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-011-9502-4}, pages = {353 -- 367}, year = {2011}, abstract = {Lake Naivasha, Kenya, is one of a number of freshwater lakes in the East African Rift System. Since the beginning of the twentieth century, it has experienced greater anthropogenic influence as a result of increasingly intensive farming of coffee, tea, flowers, and other horticultural crops within its catchment. The water-level history of Lake Naivasha over the past 200 years was derived from a combination of instrumental records and sediment data. In this study, we analysed diatoms in a lake sediment core to infer past lacustrine conductivity and total phosphorus concentrations. We also measured total nitrogen and carbon concentrations in the sediments. Core chronology was established by (210)Pb dating and covered a similar to 186-year history of natural (climatic) and human-induced environmental changes. Three stratigraphic zones in the core were identified using diatom assemblages. There was a change from littoral/epiphytic diatoms such as Gomphonema gracile and Cymbella muelleri, which occurred during a prolonged dry period from ca. 1820 to 1896 AD, through a transition period, to the present planktonic Aulacoseira sp. that favors nutrient-rich waters. This marked change in the diatom assemblage was caused by climate change, and later a strong anthropogenic overprint on the lake system. Increases in sediment accumulation rates since 1928, from 0.01 to 0.08 g cm(-2) year(-1) correlate with an increase in diatom-inferred total phosphorus concentrations since the beginning of the twentieth century. The increase in phosphorus accumulation suggests increasing eutrophication of freshwater Lake Naivasha. This study identified two major periods in the lake's history: (1) the period from 1820 to 1950 AD, during which the lake was affected mainly by natural climate variations, and (2) the period since 1950, during which the effects of anthropogenic activity overprinted those of natural climate variation.}, language = {en} } @article{WischnewskiMackayApplebyetal.2011, author = {Wischnewski, Juliane and Mackay, Anson W. and Appleby, Peter G. and Mischke, Steffen and Herzschuh, Ulrike}, title = {Modest diatom responses to regional warming on the southeast Tibetan Plateau during the last two centuries}, series = {Journal of paleolimnolog}, volume = {46}, journal = {Journal of paleolimnolog}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-011-9533-x}, pages = {215 -- 227}, year = {2011}, abstract = {A general mean annual temperature increase accompanied with substantial glacial retreat has been noted on the Tibetan Plateau during the last two centuries but most significantly since the mid 1950s. These climate trends are particularly apparent on the southeastern Tibetan Plateau. However, the Tibetan Plateau (due to its heterogeneous mountain landscape) has very complex and spatially differing temperature and precipitations patterns. As a result, intensive palaeolimnological investigations are necessary to decipher these climatic patterns and to understand ecological responses to recent environmental change. Here we present palaeolimnological results from a (210)Pb/(137)Cs-dated sediment core spanning approximately the last 200 years from a remote high-mountain lake (LC6 Lake, working name) on the southeastern Tibetan Plateau. Sediment profiles of diatoms, organic variables (TOC, C:N) and grain size were investigated. The (210)Pb record suggests a period of rapid sedimentation, which might be linked to major tectonic events in the region ca. 1950. Furthermore, unusually high (210)Pb supply rates over the last 50 years suggest that the lake has possibly been subjected to increasing precipitation rates, sediment focussing and/or increased spring thaw. The majority of diatom taxa encountered in the core are typical of slightly acidic to circumneutral, oligotrophic, electrolyte-poor lakes. Diatom species assemblages were rich, and dominated by Cyclotella sp., Achnanthes sp., Aulacoseira sp. and fragilarioid taxa. Diatom compositional change was minimal over the 200-year period (DCCA = 0.85 SD, p = 0.59); only a slightly more diverse but unstable diatom assemblage was recorded during the past 50 years. The results indicate that large-scale environmental changes recorded in the twentieth century (i.e. increased precipitation and temperatures) are likely having an affect on the LC6 Lake, but so far these impacts are more apparent on the lake geochemistry than on the diatom flora. Local and/or regional peculiarities, such as increasing precipitation and cloud cover, or localized climatic phenomena, such as negative climate feedbacks, might have offset the effects of increasing mean surface temperatures.}, language = {en} }