@article{LeloupArnaudSobeletal.2005, author = {Leloup, Philippe-Herv{\´e} and Arnaud, Nicolas and Sobel, Edward and Lacassin, R.}, title = {Alpine thermal and structural evolution of the highest external crystalline massif : the Mont Blanc}, issn = {0278-7407}, year = {2005}, abstract = {The alpine structural evolution of the Mont Blanc, highest point of the Alps (4810 m), and of the surrounding area has been reexamined. The Mont Blanc and the Aiguilles Rouges external crystalline massifs are windows of Variscan basement within the Penninic and Helvetic nappes. New structural, Ar-40/Ar-39, and fission track data combined with a compilation of earlier P-T estimates and geochronological data give constraints on the amount and timing of the Mont Blanc and Aiguilles Rouges massifs exhumation. Alpine exhumation of the Aiguilles Rouges was limited to the thickness of the overlying nappes (similar to 10 km), while rocks now outcropping in the Mont Blanc have been exhumed from 15 to 20 km depth. Uplift of the two massifs started similar to 22 Myr ago, probably above an incipient thrust: the Alpine sole thrust. At similar to 12 Ma, the NE-SW trending Mont Blanc shear zone (MBsz) initiated. It is a major steep reverse fault with a dextral component, whose existence has been overlooked by most authors, that brings the Mont Blanc above the Aiguilles Rouges. Total vertical throw on the MBsz is estimated to be between 4 and 8 km. Fission track data suggest that relative motion between the Aiguilles Rouges and the Mont Blanc stopped similar to 4 Myr ago. Since that time, uplift of the Mont Blanc has mostly taken place along the Mont Blanc back thrust, a steep north dipping fault bounding the southern flank of the range. The "European roof'' is located where the back thrust intersects the MBsz. Uplift of the Mont Blanc and Aiguilles Rouges occurred toward the end of motion on the Helvetic basal decollement (HBD) at the base of the Helvetic nappes but is coeval with the Jura thin-skinned belt. Northwestward thrusting and uplift of the external crystalline massifs above the Alpine sole thrust deformed the overlying Helvetic nappes and formed a backstop, inducing the formation of the Jura arc. In that part of the external Alps, similar to NW-SE shortening with minor dextral NE-SW motions appears to have been continuous from similar to 22 Ma until at least similar to 4 Ma but may be still active today. A sequential history of the alpine structural evolution of the units now outcropping NW of the Pennine thrust is proposed}, language = {en} } @article{ThiedeArrowsmithBookhagenetal.2005, author = {Thiede, Rasmus Christoph and Arrowsmith, J. Ram{\´o}n and Bookhagen, Bodo and McWilliams, Michael O. and Sobel, Edward and Strecker, Manfred}, title = {From tectonically to erosionally controlled development of the Himalayan orogen}, issn = {0091-7613}, year = {2005}, abstract = {Whether variations in the spatial distribution of erosion influence the location, style, and magnitude of deformation within the Himalayan orogen is a matter of debate. We report new Ar-40/Ar-39 white mica and apatite fission- track (AFT) ages that measure the vertical component of exhumation rates along an similar to 120-km-wide NE-SW transect spanning the greater Sutlej region of northwest India. The Ar-40/Ar-39 data indicate that first the High Himalayan Crystalline units cooled below their closing temperature during the early to middle Miocene. Subsequently, Lesser Himalayan Crystalline nappes cooled rapidly, indicating southward propagation of the orogen during late Miocene to Pliocene time. The AFT data, in contrast, imply synchronous exhumation of a NE-SW-oriented similar to 80 x 40 km region spanning both crystalline nappes during the Pliocene-Quaternary. The locus of pronounced exhumation defined by the AFT data correlates with a region of high precipitation, discharge, and sediment flux rates during the Holocene. This correlation suggests that although tectonic processes exerted the dominant control on the denudation pattern before and until the middle Miocene; erosion may have been the most important factor since the Pliocene}, language = {en} } @article{CarrapaAdelmannHilleyetal.2005, author = {Carrapa, Barbara and Adelmann, Dirk and Hilley, G. E. and Mortimer, Estelle and Sobel, Edward and Strecker, Manfred}, title = {Oligocene range uplift and development of plateau morphology in the southern central Andes}, year = {2005}, abstract = {[1] The Puna-Altiplano plateau in South America is a high-elevation, low internal relief landform that is characterized by internal drainage and hyperaridity. Thermochronologic and sedimentologic observations from the Sierra de Calalaste region in the southwestern Puna plateau, Argentina, place new constraints on early plateau evolution by resolving the timing of uplift of mountain ranges that bound present-day basins and the filling pattern of these basins during late Eocene-Miocene time. Paleocurrent indicators, sedimentary provenance analyses, and apatite fission track thermochronology indicate that the original paleodrainage setting was disrupted by exhumation and uplift of the Sierra de Calalaste range between 24 and 29 Ma. This event was responsible for basin reorganization and the disruption of the regional fluvial system that has ultimately led to the formation of internal drainage conditions, which, in the Salar de Antofalla, were established not later than late Miocene. Upper Eocene-Oligocene sedimentary rocks flanking the range contain features that suggest an arid environment existed prior to and during its uplift. Provenance data indicate a common similar source located to the west for both the southern Puna and the Altiplano of Bolivia during the late Eocene- Oligocene with sporadic local sources. This suggests the existence of an extensive, longitudinally oriented foreland basin along the central Andes during this time}, language = {en} }