@article{BommerScherbaumBungumetal.2005, author = {Bommer, Julian J. and Scherbaum, Frank and Bungum, Hilmar and Cotton, Fabrice and Sabetta, F. and Abrahamson, Norman A.}, title = {On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis}, issn = {0037-1106}, year = {2005}, abstract = {Logic trees are widely used in probabilistic seismic hazard analysis as a tool to capture the epistemic uncertainty associated with the seismogenic sources and the ground-motion prediction models used in estimating the hazard. Combining two or more ground-motion relations within a logic tree will generally require several conversions to be made, because there are several definitions available for both the predicted ground-motion parameters and the explanatory parameters within the predictive ground-motion relations. Procedures for making conversions for each of these factors are presented, using a suite of predictive equations in current use for illustration. The sensitivity of the resulting ground-motion models to these conversions is shown to be pronounced for some of the parameters, especially the measure of source-to-site distance, highlighting the need to take into account any incompatibilities among the selected equations. Procedures are also presented for assigning weights to the branches in the ground-motion section of the logic tree in a transparent fashion, considering both intrinsic merits of the individual equations and their degree of applicability to the particular application}, language = {en} } @article{BommerDouglasScherbaumetal.2010, author = {Bommer, Julian J. and Douglas, John and Scherbaum, Frank and Cotton, Fabrice and Bungum, Hilmar and Faeh, Donat}, title = {On the selection of ground-motion prediction equations for seismic hazard analysis}, issn = {0895-0695}, doi = {10.1785/gssrl.81.5.783}, year = {2010}, language = {en} } @article{BommerCoppersmithCoppersmithetal.2015, author = {Bommer, Julian J. and Coppersmith, Kevin J. and Coppersmith, Ryan T. and Hanson, Kathryn L. and Mangongolo, Azangi and Neveling, Johann and Rathje, Ellen M. and Rodriguez-Marek, Adrian and Scherbaum, Frank and Shelembe, Refilwe and Stafford, Peter J. and Strasser, Fleur O.}, title = {A SSHAC Level 3 Probabilistic Seismic Hazard Analysis for a New-Build Nuclear Site in South Africa}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {31}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, number = {2}, publisher = {Earthquake Engineering Research Institute}, address = {Oakland}, issn = {8755-2930}, doi = {10.1193/060913EQS145M}, pages = {661 -- 698}, year = {2015}, abstract = {A probabilistic seismic hazard analysis has been conducted for a potential nuclear power plant site on the coast of South Africa, a country of low-to-moderate seismicity. The hazard study was conducted as a SSHAC Level 3 process, the first application of this approach outside North America. Extensive geological investigations identified five fault sources with a non-zero probability of being seismogenic. Five area sources were defined for distributed seismicity, the least active being the host zone for which the low recurrence rates for earthquakes were substantiated through investigations of historical seismicity. Empirical ground-motion prediction equations were adjusted to a horizon within the bedrock at the site using kappa values inferred from weak-motion analyses. These adjusted models were then scaled to create new equations capturing the range of epistemic uncertainty in this region with no strong motion recordings. Surface motions were obtained by convolving the bedrock motions with site amplification functions calculated using measured shear-wave velocity profiles.}, language = {en} } @article{BommerAbrahamsonStrasseretal.2004, author = {Bommer, Julian J. and Abrahamson, Norman A. and Strasser, F. O. and Pecker, Alain and Bard, Pierre-Yves and Bungum, Hilmar and Cotton, Fabrice and F{\"a}h, Donat and Sabetta, F. and Scherbaum, Frank and Studer, Jost}, title = {The challenge of defining upper bounds on earthquake ground motions}, issn = {0895-0695}, year = {2004}, language = {en} } @article{BlaserOhrnbergerKruegeretal.2012, author = {Blaser, Lilian and Ohrnberger, Matthias and Kr{\"u}ger, Frank and Scherbaum, Frank}, title = {Probabilistic tsunami threat assessment of 10 recent earthquakes offshore Sumatra}, series = {Geophysical journal international}, volume = {188}, journal = {Geophysical journal international}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2011.05324.x}, pages = {1273 -- 1284}, year = {2012}, abstract = {Tsunami early warning (TEW) is a challenging task as a decision has to be made within few minutes on the basis of incomplete and error-prone data. Deterministic warning systems have difficulties in integrating and quantifying the intrinsic uncertainties. In contrast, probabilistic approaches provide a framework that handles uncertainties in a natural way. Recently, we have proposed a method using Bayesian networks (BNs) that takes into account the uncertainties of seismic source parameter estimates in TEW. In this follow-up study, the method is applied to 10 recent large earthquakes offshore Sumatra and tested for its performance. We have evaluated both the general model performance given the best knowledge we have today about the source parameters of the 10 events and the corresponding response on seismic source information evaluated in real-time. We find that the resulting site-specific warning level probabilities represent well the available tsunami wave measurements and observations. Difficulties occur in the real-time tsunami assessment if the moment magnitude estimate is severely over- or underestimated. In general, the probabilistic analysis reveals a considerably large range of uncertainties in the near-field TEW. By quantifying the uncertainties the BN analysis provides important additional information to a decision maker in a warning centre to deal with the complexity in TEW and to reason under uncertainty.}, language = {en} } @article{BlaserKruegerOhrnbergeretal.2010, author = {Blaser, Lilian and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Scaling relations of earthquake source parameter estimates with special focus on subduction environment}, issn = {0037-1106}, doi = {10.1785/0120100111}, year = {2010}, abstract = {Earthquake rupture length and width estimates are in demand in many seismological applications. Earthquake magnitude estimates are often available, whereas the geometrical extensions of the rupture fault mostly are lacking. Therefore, scaling relations are needed to derive length and width from magnitude. Most frequently used are the relationships of Wells and Coppersmith (1994) derived on the basis of a large dataset including all slip types with the exception of thrust faulting events in subduction environments. However, there are many applications dealing with earthquakes in subduction zones because of their high seismic and tsunamigenic potential. There are no well-established scaling relations for moment magnitude and length/width for subduction events. Within this study, we compiled a large database of source parameter estimates of 283 earthquakes. All focal mechanisms are represented, but special focus is set on (large) subduction zone events, in particular. Scaling relations were fitted with linear least-square as well as orthogonal regression and analyzed regarding the difference between continental and subduction zone/oceanic relationships. Additionally, the effect of technical progress in earthquake parameter estimation on scaling relations was tested as well as the influence of different fault mechanisms. For a given moment magnitude we found shorter but wider rupture areas of thrust events compared to Wells and Coppersmith (1994). The thrust event relationships for pure continental and pure subduction zone rupture areas were found to be almost identical. The scaling relations differ significantly for slip types. The exclusion of events prior to 1964 when the worldwide standard seismic network was established resulted in a remarkable effect on strike-slip scaling relations: the data do not show any saturation of rupture width of strike- slip earthquakes. Generally, rupture area seems to scale with mean slip independent of magnitude. The aspect ratio L/W, however, depends on moment and differs for each slip type.}, language = {en} } @article{BeauvalHainzlScherbaum2006, author = {Beauval, C{\´e}line and Hainzl, Sebastian and Scherbaum, Frank}, title = {Probabilistic seismic hazard estimation in low-seismicity regions considering non-Poissonian seismic occurrence}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2006.02863.x}, year = {2006}, abstract = {In low-seismicity regions, such as France or Germany, the estimation of probabilistic seismic hazard must cope with the difficult identification of active faults and with the low amount of seismic data available. Since the probabilistic hazard method was initiated, most studies assume a Poissonian occurrence of earthquakes. Here we propose a method that enables the inclusion of time and space dependences between earthquakes into the probabilistic estimation of hazard. Combining the seismicity model Epidemic Type Aftershocks-Sequence (ETAS) with a Monte Carlo technique, aftershocks are naturally accounted for in the hazard determination. The method is applied to the Pyrenees region in Southern France. The impact on hazard of declustering and of the usual assumption that earthquakes occur according to a Poisson process is quantified, showing that aftershocks contribute on average less than 5 per cent to the probabilistic hazard, with an upper bound around 18 per cent}, language = {en} } @article{BeauvalHainzlScherbaum2006, author = {Beauval, Celine and Hainzl, Sebastian and Scherbaum, Frank}, title = {The impact of the spatial uniform distribution of seismicity on probabilistic seismic-hazard estimation}, series = {Bulletin of the Seismological Society of America}, volume = {96}, journal = {Bulletin of the Seismological Society of America}, number = {6}, publisher = {GeoScienceWorld}, address = {Alexandria, Va.}, issn = {0037-1106}, doi = {10.1785/0120060073}, pages = {2465 -- 2471}, year = {2006}, abstract = {The first step in the estimation of probabilistic seismic hazard in a region commonly consists of the definition and characterization of the relevant seismic sources. Because in low-seismicity regions seismicity is often rather diffuse and faults are difficult to identify, large areal source zones are mostly used. The corresponding hypothesis is that seismicity is uniformly distributed inside each areal seismic source zone. In this study, the impact of this hypothesis on the probabilistic hazard estimation is quantified through the generation of synthetic spatial seismicity distributions. Fractal seismicity distributions are generated inside a given source zone and probabilistic hazard is computed for a set of sites located inside this zone. In our study, the impact of the spatial seismicity distribution is defined as the deviation from the hazard value obtained for a spatially uniform seismicity distribution. From the generation of a large number of synthetic distributions, the correlation between the fractal dimension D and the impact is derived. The results show that the assumption of spatially uniform seismicity tends to bias the hazard to higher values. The correlation can be used to determine the systematic biases and uncertainties for hazard estimations in real cases, where the fractal dimension has been determined. We apply the technique in Germany (Cologne area) and in France (Alps).}, language = {en} } @article{AlAtikAbrahamsonBommeretal.2010, author = {Al Atik, Linda and Abrahamson, Norman A. and Bommer, Julian J. and Scherbaum, Frank and Cotton, Fabrice and Kuehn, Nicolas}, title = {The variability of ground-motion prediction models and its components}, issn = {0895-0695}, doi = {10.1785/gssrl.81.5.794}, year = {2010}, language = {en} }