@article{GuptaPathakShrivastav2022, author = {Gupta, Banshi D. and Pathak, Anisha and Shrivastav, Anand}, title = {Optical Biomedical Diagnostics Using Lab-on-Fiber Technology}, series = {Photonics : open access journal}, volume = {9}, journal = {Photonics : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2304-6732}, doi = {10.3390/photonics9020086}, pages = {40}, year = {2022}, abstract = {Point-of-care and in-vivo bio-diagnostic tools are the current need for the present critical scenarios in the healthcare industry. The past few decades have seen a surge in research activities related to solving the challenges associated with precise on-site bio-sensing. Cutting-edge fiber optic technology enables the interaction of light with functionalized fiber surfaces at remote locations to develop a novel, miniaturized and cost-effective lab on fiber technology for bio-sensing applications. The recent remarkable developments in the field of nanotechnology provide innumerable functionalization methodologies to develop selective bio-recognition elements for label free biosensors. These exceptional methods may be easily integrated with fiber surfaces to provide highly selective light-matter interaction depending on various transduction mechanisms. In the present review, an overview of optical fiber-based biosensors has been provided with focus on physical principles used, along with the functionalization protocols for the detection of various biological analytes to diagnose the disease. The design and performance of these biosensors in terms of operating range, selectivity, response time and limit of detection have been discussed. In the concluding remarks, the challenges associated with these biosensors and the improvement required to develop handheld devices to enable direct target detection have been highlighted.}, language = {en} } @article{HaasShpritsAllisonetal.2022, author = {Haas, Bernhard and Shprits, Yuri Y. and Allison, Hayley and Wutzig, Michael and Wang, Dedong}, title = {Which parameter controls ring current electron dynamics}, series = {Frontiers in astronomy and space sciences}, volume = {9}, journal = {Frontiers in astronomy and space sciences}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-987X}, doi = {10.3389/fspas.2022.911002}, pages = {11}, year = {2022}, abstract = {Predicting the electron population of Earth's ring current during geomagnetic storms still remains a challenging task. In this work, we investigate the sensitivity of 10 keV ring current electrons to different driving processes, parameterised by the Kp index, during several moderate and intense storms. Results are validated against measurements from the Van Allen Probes satellites. Perturbing the Kp index allows us to identify the most dominant processes for moderate and intense storms respectively. We find that during moderate storms (Kp < 6) the drift velocities mostly control the behaviour of low energy electrons, while loss from wave-particle interactions is the most critical parameter for quantifying the evolution of intense storms (Kp > 6). Perturbations of the Kp index used to drive the boundary conditions at GEO and set the plasmapause location only show a minimal effect on simulation results over a limited L range. It is further shown that the flux at L \& SIM; 3 is more sensitive to changes in the Kp index compared to higher L shells, making it a good proxy for validating the source-loss balance of a ring current model.}, language = {en} } @article{HantschmannFoehlisch2022, author = {Hantschmann, Markus and F{\"o}hlisch, Alexander}, title = {A rate model approach for FEL pulse induced transmissions changes, saturable absorption, X-ray transparency and stimulated emission}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {256}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2021.147139}, pages = {9}, year = {2022}, abstract = {As the use of free electron laser (FEL) sources increases, so do the findings mentioning non-linear phenomena occurring at these experiments, such as saturable absorption, induced transparency and scattering breakdowns. These are well known among the laser community, but are still rarely understood and expected among the X-ray community and to date lack tools and theories to accurately predict the respective experimental parameters and results. We present a simple theoretical framework to access short X-ray pulse induced light- matter interactions which occur at intense short X-ray pulses as available at FEL sources. Our approach allows to investigate effects such as saturable absorption, induced transparency and scattering suppression, stimulated emission, and transmission spectra, while including the density of state influence relevant to soft X-ray spectroscopy in, for example, transition metal complexes or functional materials. This computationally efficient rate model based approach is intuitively adaptable to most solid state sample systems in the soft X-ray spectrum with the potential to be extended for liquid and gas sample systems as well. The feasibility of the model to estimate the named effects and the influence of the density of state is demonstrated using the example of CoPd transition metal systems at the Co edge. We believe this work is an important contribution for the preparation, performance, and understanding of FEL based high intensity and short pulse experiments, especially on functional materials in the soft X-ray spectrum.}, language = {en} } @article{HassaninKliemSeehaferetal.2022, author = {Hassanin, Alshaimaa and Kliem, Bernhard and Seehafer, Norbert and T{\"o}r{\"o}k, Tibor}, title = {A model of homologous confined and ejective eruptions involving kink instability and flux cancellation}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ac64a9}, pages = {7}, year = {2022}, abstract = {In this study, we model a sequence of a confined and a full eruption, employing the relaxed end state of the confined eruption of a kink-unstable flux rope as the initial condition for the ejective one. The full eruption, a model of a coronal mass ejection, develops as a result of converging motions imposed at the photospheric boundary, which drive flux cancellation. In this process, parts of the positive and negative external flux converge toward the polarity inversion line, reconnect, and cancel each other. Flux of the same amount as the canceled flux transfers to a flux rope, increasing the free magnetic energy of the coronal field. With sustained flux cancellation and the associated progressive weakening of the magnetic tension of the overlying flux, we find that a flux reduction of approximate to 11\% initiates the torus instability of the flux rope, which leads to a full eruption. These results demonstrate that a homologous full eruption, following a confined one, can be driven by flux cancellation.}, language = {en} } @article{HeWangHeetal.2022, author = {He, Yushuang and Wang, Feipeng and He, Li and Wang, Qiang and Li, Jian and Qian, Yihua and Gerhard, Reimund and Plath, Ronald}, title = {An insight Into the role of Nano-Alumina on DC Flashover-Resistance and surface charge variation of Epoxy Nanocomposites}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {29}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {3}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2022.3173510}, pages = {1022 -- 1029}, year = {2022}, abstract = {The addition of nano-Al2O3 has been shown to enhance the breakdown voltage of epoxy resin, but its flashover results appeared with disputation. This work concentrates on the surface charge variation and dc flashover performance of epoxy resin with nano-Al2O3 doping. The dispersion of nano-Al2O3 in epoxy is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The dc flashover voltages of samples under either positive or negative polarity are measured with a finger-electrode system, and the surface charge variations before and after flashovers were identified from the surface potential mapping. The results evidence that nano-Al2O3 would lead to a 16.9\% voltage drop for the negative flashovers and a 6.8\% drop for positive cases. It is found that one-time flashover clears most of the accumulated surface charges, regardless of positive or negative. As a result, the ground electrode is neighbored by an equipotential zone enclosed with low-density heterocharges. The equipotential zone tends to be broadened after 20 flashovers. The nano-Al2O3 is noticed as beneficial to downsize the equipotential zone due to its capability on charge migration, which is reasonable to maintain flashover voltage at a high level after multiple flashovers. Hence, nano-Al2O3 plays a significant role in improving epoxy with high resistance to multiple flashovers.}, language = {en} } @article{HeinsohnNiedlAnielskietal.2022, author = {Heinsohn, Natascha Katharina and Niedl, Robert Raimund and Anielski, Alexander and Lisdat, Fred and Beta, Carsten}, title = {Electrophoretic mu PAD for purification and analysis of DNA samples}, series = {Biosensors : open access journal}, volume = {12}, journal = {Biosensors : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios12020062}, pages = {15}, year = {2022}, abstract = {In this work, the fabrication and characterization of a simple, inexpensive, and effective microfluidic paper analytic device (mu PAD) for monitoring DNA samples is reported. The glass microfiber-based chip has been fabricated by a new wax-based transfer-printing technique and an electrode printing process. It is capable of moving DNA effectively in a time-dependent fashion. The nucleic acid sample is not damaged by this process and is accumulated in front of the anode, but not directly on the electrode. Thus, further DNA processing is feasible. The system allows the DNA to be purified by separating it from other components in sample mixtures such as proteins. Furthermore, it is demonstrated that DNA can be moved through several layers of the glass fiber material. This proof of concept will provide the basis for the development of rapid test systems, e.g., for the detection of pathogens in water samples.}, language = {en} } @article{HerbstBaalmannBykovetal.2022, author = {Herbst, Konstantin and Baalmann, Lennart R. and Bykov, Andrei and Engelbrecht, N. Eugene and Ferreira, Stefan E. S. and Izmodenov, Vladislav V. and Korolkov, Sergey D. and Levenfish, Ksenia P. and Linsky, Jeffrey L. and Meyer, Dominique M. -A. and Scherer, Klaus and Strauss, R. Du Toit}, title = {Astrospheres of planet-hosting cool stars and beyond when modeling meets observations}, series = {Space science reviews}, volume = {218}, journal = {Space science reviews}, number = {4}, publisher = {Springer Nature}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-022-00894-3}, pages = {46}, year = {2022}, abstract = {Thanks to dedicated long-term missions like Voyager and GOES over the past 50 years, much insight has been gained on the activity of our Sun, the solar wind, its interaction with the interstellar medium, and, thus, about the formation, the evolution, and the structure of the heliosphere. Additionally, with the help of multi-wavelength observations by the Hubble Space Telescope, Kepler, and TESS, we not only were able to detect a variety of extrasolar planets and exomoons but also to study the characteristics of their host stars, and thus became aware that other stars drive bow shocks and astrospheres. Although features like, e.g., stellar winds, could not be measured directly, over the past years several techniques have been developed allowing us to indirectly derive properties like stellar mass-loss rates and stellar wind speeds, information that can be used as direct input to existing astrospheric modeling codes. In this review, the astrospheric modeling efforts of various stars will be presented. Starting with the heliosphere as a benchmark of astrospheric studies, investigating the paleo-heliospheric changes and the Balmer H alpha projections to 1 pc, we investigate the surroundings of cool and hot stars, but also of more exotic objects like neutron stars. While pulsar wind nebulae (PWNs) might be a source of high-energy galactic cosmic rays (GCRs), the astrospheric environments of cool and hot stars form a natural shield against GCRs. Their modulation within these astrospheres, and the possible impact of turbulence, are also addressed. This review shows that all of the presented modeling efforts are in excellent agreement with currently available observations.}, language = {en} } @article{HerzogReppertPudelletal.2022, author = {Herzog, Marc and Reppert, Alexander von and Pudell, Jan-Etienne and Henkel, Carsten and Kronseder, Matthias and Back, Christian H. and Maznev, Alexei A. and Bargheer, Matias}, title = {Phonon-dominated energy transport in purely metallic heterostructures}, series = {Advanced functional materials}, volume = {32}, journal = {Advanced functional materials}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202206179}, pages = {8}, year = {2022}, abstract = {Ultrafast X-ray diffraction is used to quantify the transport of energy in laser-excited nanoscale gold-nickel (Au-Ni) bilayers. Electron transport and efficient electron-phonon coupling in Ni convert the laser-deposited energy in the conduction electrons within a few picoseconds into a strong non-equilibrium between hot Ni and cold Au phonons at the bilayer interface. Modeling of the subsequent equilibration dynamics within various two-temperature models confirms that for ultrathin Au films, the thermal transport is dominated by phonons instead of conduction electrons because of the weak electron-phonon coupling in Au.}, language = {en} } @article{HillwigReindlRotteretal.2022, author = {Hillwig, Todd C. and Reindl, Nicole and Rotter, Hannah M. and Rengstorf, Adam W. and Heber, Ulrich and Irrgang, Andreas}, title = {Two evolved close binary stars: GALEX J015054.4+310745 and the central star of the planetary nebula Hen 2-84}, series = {Monthly notices of the Royal Astronomical Society}, volume = {511}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac226}, pages = {2033 -- 2039}, year = {2022}, abstract = {As part of a survey to find close binary systems among central stars of planetary nebula, we present two newly discovered binary systems. GALEX J015054.4+310745 is identified as the central star of the possible planetary nebula Fr 2-22. We find it to be a single-lined spectroscopic binary with an orbital period of 0.2554435(10) d. We support the previous identification of GALEX J015054.4+310745 as an sdB star and provide physical parameters for the star from spectral modelling. We identify its undetected companion as a likely He white dwarf. Based on this information, we find it unlikely that Fr 2-22 is a true planetary nebula. In addition, the central star of the true planetary nebula Hen 2-84 is found to be a photometric variable, likely due to the irradiation of a cool companion. The system has an orbital period of 0.485645(30) d. We discuss limits on binary parameters based on the available light-curve data. Hen 2-84 is a strongly shaped bipolar planetary nebula, which we now add to the growing list of axially or point-symmetric planetary nebulae with a close binary central star.}, language = {en} } @article{HindesAssafSchwartz2022, author = {Hindes, Jason and Assaf, Michael and Schwartz, Ira B.}, title = {Outbreak size distribution in stochastic epidemic models}, series = {Physical review letters}, volume = {128}, journal = {Physical review letters}, number = {7}, publisher = {American Physical Society}, address = {College Park, Md.}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.128.078301}, pages = {6}, year = {2022}, abstract = {Motivated by recent epidemic outbreaks, including those of COVID-19, we solve the canonical problem of calculating the dynamics and likelihood of extensive outbreaks in a population within a large class of stochastic epidemic models with demographic noise, including the susceptible-infected-recovered (SIR) model and its general extensions. In the limit of large populations, we compute the probability distribution for all extensive outbreaks, including those that entail unusually large or small (extreme) proportions of the population infected. Our approach reveals that, unlike other well-known examples of rare events occurring in discrete-state stochastic systems, the statistics of extreme outbreaks emanate from a full continuum of Hamiltonian paths, each satisfying unique boundary conditions with a conserved probability flux.}, language = {en} }