@unpublished{FeudelSeehafer1994, author = {Feudel, Fred and Seehafer, Norbert}, title = {On the bifurcation phenomena in truncations of the 2D Navier-Stokes equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13390}, year = {1994}, abstract = {We have studied bifurcation phenomena for the incompressable Navier-Stokes equations in two space dimensions with periodic boundary conditions. Fourier representations of velocity and pressure have been used to transform the original partial differential equations into systems of ordinary differential equations (ODE), to which then numerical methods for the qualitative analysis of systems of ODE have been applied, supplemented by the simulative calculation of solutions for selected initial conditions. Invariant sets, notably steady states, have been traced for varying Reynolds number or strength of the imposed forcing, respectively. A complete bifurcation sequence leading to chaos is described in detail, including the calculation of the Lyapunov exponents that characterize the resulting chaotic branch in the bifurcation diagram.}, language = {en} } @unpublished{RoellyFradon2006, author = {Roelly, Sylvie and Fradon, Myriam}, title = {Infinite system of Brownian balls : equilibrium measures are canonical Gibbs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6720}, year = {2006}, abstract = {We consider a system of infinitely many hard balls in Rd undergoing Brownian motions and submitted to a smooth pair potential. It is modelized by an infinite-dimensional stochastic differential equation with a local time term. We prove that the set of all equilibrium measures, solution of a detailed balance equation, coincides with the set of canonical Gibbs measures associated to the hard core potential added to the smooth interaction potential.}, language = {en} }